Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the monthly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

PCM briefing: ThermoSafe-ACL Airshop agreement; new CEO at Phase Change Energy Solutions

Ben Welter - Sunday, September 06, 2020

Pegasus ULDSonoco ThermoSafe and ACL Airshop have announced a global agreementfor the handling and repair of ThermoSafe’s Pegasus ULD bulk temperature-controlled containers ACL Airshop, of Greenville, S.C., provides cargo support equipment and logistics solutions for airlines and air cargo carriers. Sonoco says the unit load device is made of composite materials that are lighter and more damage-resistant than traditional metal containers. It uses a gelled phase change material to maintain pharmaceutical-safe temperatures for five days or more, depending on the PCM used.

Has long-term thermal energy storage come of age? That's the premise of a recent advertorial sponsored by Viking Cold Solutions on Greentech Media's website. The Houston company says its PCM-based system, designed for use in cold storage facilities, stores enough energy to cycle off refrigeration for up to 13 hours per day and reduce energy consumption by more than 25 percent. Not much new in the article, but the reader comment section might be of interest to people who are familiar with the technology.

• A cycling club in Great Britain teamed up with Peli BioThermal this summer to deliver temperature-sensitive prescriptions to housebound people. The company supplied Banbury Star Cyclists with Crēdo ProMed temperature-controlled medical transport bags. The PCM-equipped bags are designed to transport pharmaceutical samples and medical supply payloads within two ranges, 2-8°C and 15-25°C.

Phase Change Energy Solutions of Asheboro, N.C., has a new chief executive officer. Govi Rao, co-founder and managing partner at CARBON Group Global, joined the company in April. His predecessor, Dennis McGill, had held the position since December 2018.

Sunamp Ltd. of Scotland has raised 4.5 million pounds in a Series A financing round led by Chilean venture capital firm Aurus Capital. Sunamp says it will use the funds to support commercial scaling in the United Kingdom and expansion in Central Europe, Asia and North America.

• The 15th Conference on Advanced Building Skins will be held as scheduled Oct. 26-27 in Bern, Switzerland. "In the unlikely event that the conference will not take place, or the participant may not be able to travel," organizers say, "paid registration will be credited to our conference next year." The 12 sessions, with over 70 presentations, will also be available online.

• A four-man canoe team put Glacier Tek's PCM-powered cooling vests to the test last month at the Missouri 340, a 340-mile paddle race from Kansas City to St. Charles, Mo. Team Mississippi, led by Scott Miller, 44, of Minneapolis, finished 11th overall in the race, completing the course in 44 hours, 38 minutes. The race drew more than 350 entries. Team members used the vests to cool down at checkpoints. Miller, second from left in the photo, plans to use the vests to battle the heat in the Great Alabama 650, which bills itself as the world's longest annual paddle race. That event begins Sept. 26 on the Coosa River in northern Alabama.

Research roundup: Hysteresis; reflective roof coating; optimizing energy balance of nearly zero energy buildings; more

Ben Welter - Monday, August 31, 2020

From Journal of Molecular Liquids:

The research progress on phase change hysteresis affecting the thermal characteristics of PCMs: A review

From Journal of Building Engineering:

Thermal behavior of a phase change material in a building roof with and without reflective coating in a warm humid zone

From Renewable Energy:

A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater

From Sustainable Cities and Society:

Numerical analysis of phase change materials for optimizing the energy balance of a nearly zero energy building

From Journal of Energy Storage:

Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm
Assessing corrosive behaviour of commercial phase change materials in the 21–25 ºC temperature range
Exergy and economic analyses of nanoparticle-enriched phase change material in an air heat exchanger for cooling of residential buildings
Experimental and numerical investigation on enhancing heat transfer performance of a phase change thermal storage tank
The effect of ultraviolet coating on containment and fire hazards of phase change materials impregnated wood structure

From Energy Conversion and Management:

Application of granular materials for void space reduction within packed bed thermal energy storage system filled with macro-encapsulated phase change materials

From Chemical Engineering Journal:

Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material

From Solar Energy:

Characterization and cooling effect of a novel cement-based composite phase change material
Effect of polymer-derived silicon carbonitride on thermal performances of polyethylene glycol based composite phase change materials

From Case Studies in Thermal Engineering:

Effect of porosity and pore density of copper foam on thermal performance of the paraffin-copper foam composite Phase-Change Material

From Renewable and Sustainable Energy Reviews:

A critical assessment on synergistic improvement in PCM based thermal batteries

From Journal of Energy Resources Technology:

Experimental Analysis of Salt Hydrate Latent Heat Thermal Energy Storage System With Porous Aluminum Fabric and Salt Hydrate as Phase Change Material With Enhanced Stability and Supercooling

From Energy Sources:

Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material
Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices

From Aalto University:

Experimental design and investigation on a thermal energy storage system using phase change materials [thesis]

From Journal of Applied Physics:

Development of eco-sustainable plasters with thermal energy storage capability

From Chemical Engineering Transactions:

Thermal Performance of Phase Change Material Wallboard with Typical Structure: Artificial Controlled Condition Experimental Investigation

From Materials Research Express:

Fabrication of thermal energy storage wood based on graphene aerogel encapsulated polyethylene glycol as phase change material
Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material

From ACS Sustainable Chemical Engineering:

Synthesis and Characterization of Fatty Acid Amides from Commercial Vegetable Oils and Primary Alkyl Amines for Phase Change Material Applications

From Carbohydrate Polymers:

Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning

From Materials Today: Proceedings:

Effect of various phase change materials (paraffin wax/hydrogenated vegetable oil) packed in a fabricated shell and tube type heat exchanger

From Solar Energy Materials and Solar Cells:

Composite phase change materials with heat transfer self-enhancement for thermal energy storage
Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy

From International Journal of Refrigeration:

Improving the performance of household refrigerating appliances through the integration of phase change materials in the context of the new global refrigerator standard IEC 62552:2015

From Advances in Colloid and Interface Science:

Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management

From Building and Environment:

Space heating performance of novel ventilated mortar blocks integrated with phase change material for floor heating

From Energy:

A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation

From Journal of Cleaner Production:

Enhanced thermal storage capacity of paraffin/diatomite composite using oleophobic modification

From International Conference on Renewable Energies for Developing Countries:

Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications

Research roundup: Polythioether-based PCMS; alginate encapsulation; temperature stresses in concrete pavement; more

Ben Welter - Friday, May 08, 2020

From European Polymer Journal:

Extremely fast synthesis of polythioether based phase change materials (PCMs) for thermal energy storage

From Journal of Building Engineering:

Thermal behavior analysis of hollow bricks filled with phase-change material (PCM)

From Energies:

FEM Applied to Building Physics: Modeling Solar Radiation and Heat Transfer of PCM Enhanced Test Cells

From Iranian Polymer Journal:

Encapsulation of phase change materials with alginate modified by nanostructured sodium carbonate and silicate

From Energy & Fuels:

Aluminium ammonium sulfate dodecahydrate with multiple additives as composite phase change materials for thermal energy storage

From Materials Today: Proceedings:

Evaluation and reduction of temperature stresses in concrete pavement by using phase changing material
Optimization of Heat Energy Based on Phase Change Materials used in Solar Collector using Taguchi Method
Experimental and Theoretical Investigations on Thermal Conductivity of the Paraffin Wax using CuO Nanoparticles

From Journal of Energy Storage:

Novel synthesis of silica coated palmitic acid nanocapsules for thermal energy storage
Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods
Effect of phase separation and supercooling on the storage capacity in a commercial latent heat thermal energy storage: Experimental cycling of a salt hydrate PCM
Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study
Characterization of innovative mortars with direct incorporation of phase change materials

From Applied Thermal Engineering:

A trade study of a phase change system in a stratospheric airship based on a triple gasbag concept
Experimental evaluation of structural insulated panels outfitted with phase change materials
Lattice Boltzmann simulation of melting heat transfer in a composite phase change material

From Geothermics:

Parametric modeling and simulation of low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank

From Energy:

Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling
A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance

From Advances in Energy Research:

Theoretical Modeling of Phase Change Material-Based Space Heating Using Solar Energy

From Chemical Engineering Journal:

High latent heat and recyclable form-stable phase change materials prepared via a facile self-template method

From Composites Part B: Engineering:

In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection

From Solar Energy:

Effects of external insulation component on thermal performance of a Trombe wall with phase change materials

From Journal of Architectural Engineering:

Experimental and Numerical Thermal Properties Investigation of Cement-Based Materials Modified with PCM for Building Construction Use

From Energy Conversion and Management:

Experimental and numerical study on the thermal performance of ventilated roof composed with multiple phase change material (VR-MPCM)

From Construction and Building Materials:

Multi-scale analysis on thermal properties of cement-based materials containing micro-encapsulated phase change materials

From Applied Energy:

D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability
Novel bio-based phase change materials with high enthalpy for thermal energy storage

From Materials Today Energy:

A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications

From International Journal of Thermal Sciences:

Experimental study and assessment of high-tech thermal energy storing radiant floor heating system with latent heat storage materials

From Advanced Powder Technology:

Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers

Cubesat propulsion concept wins $225,000 National Science Foundation grant

Ben Welter - Friday, February 14, 2020

A Cubesat propulsion system that uses phase change material to store solar thermal energy for use when needed has been awarded a $225,000 National Science Foundation SBIR grant. The ThermaSat concept, developed by Howe Industries of Tempe, Ariz., is designed to provide propulsion for a typical 15kg cubcubesat for 10 years.

Cubesats are tiny satellites — weighing as little as 200 grams — that orbit close to Earth’s atmosphere. They are cheaper to develop and launch than larger satellites. Cubesats have a wide range of purposes, including the collection of mapping and weather data. More than 1,100 have been successfully deployed.

Troy Howe, owner of Howe Industries, answered questions about the ThermaSat propulsion system.

Q: How long has your company been working on the concept?

A: "We have been working on this topic for only about a year in preparation for our NSF proposal, but have experience with optical systems and phase change materials going back about five years."

Q: Can you briefly describe how the system works?

A: "The ThermaSat works by heating liquid water propellant to high temperature steam using incident sunlight. Normally, it is difficult to reach high enough temperatures to use water as propellant, but our optical filtration system is designed to reject long wavelengths of light and only transmit short wavelengths- similar to the greenhouse effect. The phase change materials in the thermal capacitor store the solar energy over a period of hours and then heat the propellant during a 'burn' phase.

ThermaSat cutaway drawing"The PCM will be distributed throughout a graphite matrix in the form of small beads. Flow channels will run axially down the length of the cylinder for the propellant to pass through. The design is based loosely on the old NERVA fuel elements from the nuclear rocket program in the 1970s, with the UC kernels being replaced with our PCM. The drawing here shows a cutaway of the thermal capacitor surrounded by the optical system.

"The system is very conceptual at this point and has not been tested, although the propulsion characteristics are well understood. Our task at this point is to show that the optical system works as predicted and can reach the desired temperatures. Phase II will address the effects of a vacuum environment on a prototype."

Q: What type of PCM is used?

A: "We chose a salt (80LiOH+20LiF) as our PCM, it melts at 700K and has a latent heat of fusion of 1163 J/g. The material was selected based on a study performed by NASA in 1986 on space energy storage. The paper was called 'Technology for Brayton-Cycle Space Powerplants Using Solar and Nuclear Energy' by Robert English.""

Q: How much PCM would be used in a system powering a typical Cubesat?

A: "The standard design includes 0.62 kg of PCM. "

Q: Are you working with any Cubesat manufacturers at this point?

A: "We received letters of interest from Pumpkin Space Systems, Aster Labs, and Arizona State University. They all expressed interest in having a safe and reliable Cubesat propulsion system but we have not formally formed collaboration with any manufacturers at this point.”

Q: How will you use the NSF SBIR grant?

A: "Our goals for this topic include demonstrating the optical system in a lab bench test, fabricating photonic crystals, and performing computational analysis on the thermal, structural, and propulsion systems."

Q: What's the next major step in commercializing the system?

A: "Our commercialization strategy right now is to build a functioning prototype and demonstrate operation on earth. From that point we will aim to do a flight test which performs a set of orbital maneuvers and successfully de-orbits itself. From there we will work with Cubesat manufacturers to move forward."

Q: What excites you most about this project?

A: "We are excited about how near term and effective this technology will be for the upcoming Cubesat revolution. We hope to provide a safe, reliable, and effective propulsion solution that can be used with thousands of different satellites and drastically increase the performance of new technologies in space in the timeframe of just a few years.”

PCM briefing: Ice Energy files for bankruptcy; Viking Cold has opening for thermal engineer

Ben Welter - Monday, February 10, 2020

Ice Energy, the Santa Barbara, Calif., company that made and distributed ice-based thermal energy storage systems, has filed for bankruptcy. The company's Ice Bear system makes ice at night when demand for electricity is low and capacity is abundant. During the day, the stored ice is used to provide cooling. Details of the Chapter 7 bankruptcy, filed in December, are sparse. The company's website is no longer active. Over the years, Ice Energy had won several major energy storage and distribution contracts with utilities, and had begun marketing a smaller version of the Ice Bear system aimed at retail customers. 

Viking Cold Solutions has an opening for a chemical/thermal engineer in Houston. The engineer will "conduct research in Thermal Science, Storage/Heat Transfer and Phase Change Materials (PCM) for low temperature applications (<10⁰C)."

Axiom Exergy has secured more than $1 million in orders for the Axiom Cloud, a software platform that helps manage energy consumption in supermarkets and cold storage facilities that use the company's PCM-powered thermal storage systems.

• The 2020 Advancements in Thermal Management conference, to be held Aug. 6-7 in Denver, has issued a call for presentations. Topics include thermal materials, thermal modeling and characterization and measurement of thermal materials. Abstracts are due Feb. 12.

EnergyNest will install a large thermal energy storage battery at a Senftenbacher brick factory in Austria. The system will temporarily store excess energy in the form of hot air from a tunnel furnace. The stored heat be converted to steam and later reused in production.

Devan Chemicals, the Belgium-based developer of finishing technologies for textiles, introduced its Tones of Cool Bio technology at the Heimtextil trade show in Frankfurt, Germany, last month. The technology "stimulates the textile to dissipate redundant heat from the body and to instantly reduce the body temperature," the company says. The phase change materials "are derived from sustainable, natural sources.

Registration is open for the 23rd Microencapsulation Industrial Convention to be held June 8-11 in Rotterdam, Netherlands.

Research roundup: Carbonized waste tires; cetyl palmitate/nickel foam; hydrated salt corrosion assessment; more

Ben Welter - Tuesday, January 14, 2020

From Waste Management:

Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage

From Journal of Energy Storage:

Development of polyurethane foam incorporating phase change material for thermal energy storage
Facile synthesis and thermal performance of cetyl palmitate/nickel foam composite phase change materials for thermal energy storage
Optimal sizing design and operation of electrical and thermal energy storage systems in smart buildings

From Energy Conversion and Management:

Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems
Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study

From Applied Energy:

Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage

From Renewable Energy:

Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems
Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application
Selection of a phase change material and its thickness for application in walls of buildings for solar-assisted steam curing of precast concrete
Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings

From Applied Thermal Engineering:

Analysis of energy retrofit system using latent heat storage materials applied to residential buildings considering climate impacts
Experimental and numerical simulation of phase change process for paraffin/expanded graphite/ethylene-vinyl acetate ternary composite
An experimental investigation on the evaporation of polystyrene encapsulated phase change composite material based nanofluids

From Solar Energy Materials and Solar Cells:

Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity

From Energies:

The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System

From Journal of Materials Science:

Graphene aerogel-based phase changing composites for thermal energy storage systems

From Journal of Mechanical Science and Technology:

A study on development of the thermal storage type plate heat exchanger including PCM layer

From Journal of Power Sources:

Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge

From Scientific Reports:

Modification of asphalt mixtures for cold regions using microencapsulated phase change materials

From ASES National Solar Conference:

A Study on the Thermal Energy Storage System Using Multiple PCMs [pdf]

From Molecules:

Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods

From Energy and Buildings:

Experimental study on thermal performance of a mobilized thermal energy storage system: A case study of hydrated salt latent heat storage

From Chemical Engineering Journal:

Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management

From International Journal of Heat and Mass Transfer:

A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection

ACT is awarded a U.S. patent for PCM with tunable melt point

Ben Welter - Friday, January 10, 2020

Advanced Cooling Technologies of Lancaster, Pa., has been awarded a U.S. patent for a phase change material with a tunable melting point.

The hydration level of the PCM, a salt hydrate consisting primarily of salt and water, is altered to change the melting point to a desired set point using changes in humidity of the system.

“In an ARPA-E ARID funded program, we showed that you could change the melting point of salt hydrate phase change materials by changing the hydration levels of the salt hydrate in-situ,” Richard Bonner, ACT’s vice president for R&D, wrote in a LinkedIn post. “We also applied this technology to power plant cooling, where the seasonal variations in ambient temperature necessitate different melting points. Congratulations to the inventors: Dr. Ying Zheng, Dr. Chien-hua Chen, Dr. Howard Pearlman, and Dr. Fangyu Cao."

ACT worked with Lehigh University and the University of Missouri to develop the PCM. The idea was prompted by ACT’s interest in utilizing seasonal shifts in weather for the company’s day/night thermal storage application. A tunable melt point allows the PCM to be more easily solidified in cold and hot seasons.

The targeted melt temperatures in the project were from 25° C to 45° C for low-grade thermal energy storage, but could be extended to higher temperatures with other salt hydrates, the company said.

The project was funded, in part, with a $3.2 million ARPA-E ARID grant, awarded in 2015. ARID stands for "Advanced Research in dry Cooling." The project teams were challenged to "develop innovative, high-performance air-cooled heat exchangers and supplemental cooling systems and/or cool-storage systems" for use in thermoelectric power plants, to replace existing technologies that use a substantial amount of water to cool plant condensers.

The ARID project was completed in 2018. ACT's invention is now at the lab-scale testing phase. The most difficult hurdle, the company said, will be to scale up to commercialization level.  “From a manufacturing standpoint, shifting of the hydration level would require a large infrastructure for altering the humidity,” the company said.

“The concept could also be applied to the HVAC industry (building comfort) to provide day/night load shifting,” the company said, “as well as PCM synthesis and preparation for a consistent product. “
 

Sunamp's UniQ heat storage product earns RAL certification

Ben Welter - Monday, December 16, 2019

The RAL Quality Association PCM has awarded the RAL Quality Mark to Sunamp Ltd. for its UniQ line of thermal batteries.

RAL quality markThe product, which has been installed in thousands of homes across Europe, uses a specially formulated phase change material to store large amounts of energy from renewable and other sources and release it as heat to deliver hot water and space heating as needed. The PCM is sodium acetate trihydrate-based with a patented formulation giving a melt point of 58 degrees Celsius. 

In independent testing conducted by ZAE Bayern, the PCM was successfully melted and solidified in a UniQ heat battery for 10,000 cycles. At the end of the test, no significant differences in stored thermal energy capacity were found between the cycled samples and an uncycled sample of the PCM. The product, which also passed leak testing, earned the association's highest level of certification, Grade A. 

Over 3,000 UniQ units are now in service, with Sunamp projecting a tenfold growth in sales next year. The quality mark will be featured on Sunamp’s website and in other marketing materials, UniQ manuals and product labels.

“We are delighted that our thermally charged UniQ product range of heat batteries has been awarded a globally recognized mark of quality,” said Kate Fisher, Ph.D., a materials integration scientist at Sunamp, which is based in Edinburgh, Scotland. “RAL certification is a huge accolade and cements Sunamp’s position as world leaders at the forefront of the technology.”

Sunamp UniQ heat batteriesThe RAL Quality Association PCM was established in 2004 to develop standards for the PCM industry. Members include Axiotherm, Microtek Laboratories, Rubitherm, Croda Europe, va-Q-tec, PCM Technology, Global-Systems Europe, Sasol, Sunamp, Pluss Advanced Technologies and PureTemp LLC.

Members and non-members alike can submit their products to the association for independent testing and earn the RAL Quality Mark. To qualify for the mark, products and materials must meet standards for energy storage capacity and phase transition temperature and stability, as defined in RAL-GZ 896.

“I am delighted that more and more products with PCM technology can be awarded the RAL Quality Mark as meaningful and transparent proof of quality and longevity,” said Stefan Thomann, the association’s managing director. “The great thing about Sunamp´s UniQ heat batteries is that they can be installed and used in homes very easily and save a lot of energy costs and carbon emissions immediately. The fact that they passed more than 10,000 cycles make sure that users will be able to profit from these benefits for decades.”

Research roundup: Passive cooling in buildings; honeycomb carbon fibers; leak-free aggregates; more

Ben Welter - Monday, October 14, 2019

From Applied Energy:

Passive cooling through phase change materials in buildings. A critical study of implementation alternatives

From Applied Thermal Engineering:

Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage

From e-Polymers:

Fabrication and characterization of conductive microcapsule containing phase change material

From Construction and Building Materials:

Preparation and characterization of nano-SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials
Development of leak-free phase change material aggregates
Behavior of cementitious mortars with direct incorporation of non-encapsulated phase change material after severe temperature exposure

From Advanced Functional Materials:

Engineering the Thermal Conductivity of Functional Phase‐Change Materials for Heat Energy Conversion, Storage, and Utilization

From Journal of Energy Storage:

A numerical investigation of the effects of metal foam characteristics and heating/cooling conditions on the phase change kinetic of phase change materials embedded in metal foam
Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review
Innovative composite sorbent for thermal energy storage based on a SrBr2·6H2O filled silicone composite foam

From ACS Applied Nano Materials:

Concentrated Ag Nanoparticles in Dodecane as Phase Change Materials for Thermal Energy Storage

From Materials Research Express:

Preparation of 1-dodecanol microcapsules with cellulose nanofibers-modified melamine-formaldehyde resin as a potential phase change material

From IOP Conference Series: Earth and Environmental Science:

Optimisation of Parameters in Thermal Energy Storage System by Enhancing Heat Transfer in Phase Change Material

From International Journal of Heat and Mass Transfer:

Thermal transport properties at interface of fatty acid esters enhanced with carbon-based nanoadditives

From Journal of Solar Energy Engineering:

Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling

From Solar Energy:

Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage

From RSC Advances:

A novel forced separation method for the preparation of paraffin with excellent phase changes

From Energy Conversion and Management:

Experimental characterisation of a novel thermal energy storage based on open-cell copper foams immersed in organic phase change material

PCM briefing: Acumen invests in Promethean Power Systems; Viking Cold wins Cleanie award

Ben Welter - Monday, October 14, 2019

• Social venture capital investor Acumen has invested an undisclosed amount in Promethean Power Systems Inc., which makes PCM-based refrigeration systems for cold-storage and milk chilling applications in off-grid and partially electrified areas of developing countries. Jiten Ghelani, chief executive of Promethean, which is based in Boston, Mass., and Pune, India, said the investment would help the company accelerate the adoption of its products across India and other markets, and also expand its cooling-as-a-service offerings. 

Air New Zealand pillow• Two new consumer products featuring temperature-control fabrics from Outlast Technologies hit the market recently: A pillow designed to improve the quality of sleep for passengers on Air New Zealand's long-haul flights and a Calloway pullover designed to keep golfers cool in warm weather and warm in cold weather

Viking Cold Solutions of Houston, Texas, won a Platinum Cleanie Award last month for a PCM-based storage and demand management project in Massachusetts. The Cleanie Awards, presented at this year's North America Smart Energy Week in Salt Lake City, Utah, recognize companies and individuals shaping the clean-tech and renewable energy industries. The Viking Cold project involved the installation and commissioning of TES systems to store refrigeration energy and facilitate 1.3 MW of energy demand reduction across eight customer facilities, including the Greater Boston Food Bank.

Sonoco ThermoSafe of Arlington Heights, Ill., has introduced a new temperature-controlled box rental service. "The new Orion r product line is based on the existing ChillTech product," said Ben VanderPlas, manager of engineering and product management at Sonoco. "We’ve made changes to make the product more reusable (added EPP) and have increased the VIP insulation. The PCMs remain the same, using paraffin-based materials. ChillTech was developed by Laminar Medica in the UK prior to their acquisition and integration into the ThermoSafe business. Solutions will exist for 2-8, 15-25 and frozen temperatures."

Sonoco ThermoSafe has posted an opening for a Senior Account Manager Europe, to be based in Netherlands.

Microtek Laboratories Inc. of Dayton, Ohio, has introduced a new line of PCM-equipped pouches and panels for use in temperature-controlled shipping.