Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

PCM briefing: $33M in funding for CSP thermal storage research; Walero undergarment put to the test in race simulator

Ben Welter - Friday, March 29, 2019

• The U.S. Department of Energy has announced $33 million in research funding to advance technologies that work toward achieving the department's 2030 cost target of 5 cents per kilowatt-hour for CSP-generated electricity with at least 12 hours of thermal energy storage. "This research," DOE writes, "includes new materials and technologies that significantly reduce the cost of manufacturing, enable new energy storage technologies, and develop solutions that enable a solar field to operate autonomously without any human input."

Jack MitchellWalero racewear, which uses Outlast phase change technology to regulate temperature in race and rally drivers, has been put to the test on reigning British GT4 champion Jack Mitchell in a temperature-controlled race simulator. The tests were directed by racing performance coach Dean Fouache. On the first day, Mitchell, right, wore standard Nomex underwear; on the second day, he wore Walero underwear. Three measurements were recorded every five minutes during the hourlong tests: body temperature, heart rate and weight loss. In all three areas, Walero showed measurable advantages over the Nomex. "Jack sweated around 40 percent less in the Walero underwear and his average heart rate was eight beats less over the course of the hour," Fouache told Autosport magazine. "So, all in all, relatively conclusive results - even though it is a small comparison test."

• New this month from Central West Publishing in Australia: "Phase Change Materials," edited by Vikas Mittal, an associate professor of chemical engineering at the Petroleum Institute in Abu Dhabi.

• The International Conference on Innovative Applied Energy in the United Kingdom earlier this month featured a number of experiments with phase change materials, including Auburn University's development of micro-encapsulated phase change materials that can be combined with many different media. Other PCM research included a bio-composite made with hemp lime concrete and a novel utilization of fly ash to encapsulate phase change materials.

James Joule• The 200th anniversary of the birth of physicist James Prescott Joule will be commemorated with the unveiling of a plaque in Sale, United Kingdom, in April. The English physicist and mathematician, who gave his name to the unit of energy, was born on Dec. 24, 1818, in Salford. He died in Sale in 1889.

• The deadline for submitting manuscripts for "Phase Change Materials of Buildings," a special issue of the journal Buildings, is Sunday, March 31. Dr. Morshed Alam of Australia's Swinburne University of Technology is the guest editor.

Research roundup: Hollow aluminum bricks; animal-fat-based PCM for building applications; floor heating system design; more

Ben Welter - Wednesday, March 27, 2019

From Applied Thermal Engineering:

Thermal characteristics of aluminium hollowed bricks filled with phase change materials: Experimental and numerical analyses

From Energies:

Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation

From Sustainable Energy and Fuels:

Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review

From Environmental Research:

Design and analysis of phase change material based floor heating system for thermal energy storage

From Solar Energy Materials and Solar Cells:

Direct impregnation and characterization of Colemanite/Ulexite-Mg (OH) 2 paraffin based form-stable phase change composites
Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection

From Journal of Molecular Liquids:

Fabrication and characterization of phase change nanofluid with high thermophysical properties for thermal energy storage

From Renewable Energy:

Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes

From International Journal of Thermal Physics:

Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System

From Journal of Energy Storage:

From Energy Procedia:

Development of Corn-Oil Ester and Water Mixture Phase Change Materials for Food Refrigeration Applications
Experimental study on the performance of a new encapsulation panel for PCM's to be used in the PCM-Air heat exchanger

From Case Studies in Thermal Engineering:

Thermal characteristics on melting/solidification of low temperature PCM balls packed bed with air charging/discharging

Research roundup: Poly (methyl methacrylate) shell; calcium carbonate shell; macroscopic composite cement mortars; more

Ben Welter - Tuesday, March 19, 2019

From Energy Procedia:

Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage
Supercooling study of erythritol/EG composite phase change materials
Thermal performance of pouch Lithium-ion battery module cooled by phase change materials
Active cooling based battery thermal management using composite phase change materials
Investigation on Thermal Performance of an Integrated Phase Change Material Blind System for Double Skin Facade Buildings
Experimental study on preparation of a novel foamed cement with paraffin/ expanded graphite composite phase change thermal energy storage material

From Colloids and Surfaces A: Physicochemical and Engineering Aspects:

Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage

From Journal of Materials Chemistry A:

A novel shape-stabilization strategy for phase change thermal energy storage

From Journal of Molecular Liquids:

Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects

From Energy and Buildings:

Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: lab-scale characterization

From Applied Sciences:

Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material

From Solar Energy:

Modelling and performance analysis of a new concept of integral collector storage (ICS) with phase change material

Research roundup: Personal cooling system; optimization of active wall system; cement mortar; asphalt pavement; more

Ben Welter - Friday, March 15, 2019

From International Journal of Refrigeration:

Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling

JMR illustration of microencapsulated n-octadecane with silk From Journal of Materials Research:

Fabrication and characterization of microencapsulated n-octadecane with silk fibroin–silver nanoparticles shell for thermal regulation

From IOP Conference Series: Earth and Environmental Sciences:

Simple Thermal Energy Storage Tank for Improving the Energy Efficiency of an Existing Air-conditioning System
An optimization study into thermally activated wall system with latent heat thermal energy storage
Simulation of operation performance of a solar assisted ground heat pump system with phase change thermal storage for heating in a rural building in Xi'an
Experimental Study on the Demand Shifting Effects of PCM Integrated Air-Conditioning Duct

From International Journal of Energy Research:

Efficiency optimisation of the thermal energy storage unit in the form of the ceiling panel for summer conditions

From Materials Research Express:

Experimental study on thermal conductivity of composite phase change material of fatty acid and paraffin

From Energies:

Design Optimization of a Hybrid Steam-PCM Thermal Energy Storage for Industrial Applications

From Construction and Building Materials:

Analysis of thermoregulation indices on microencapsulated phase change materials for asphalt pavement

From Applied Thermal Engineering:

Experimental and numerical characterization of an impure phase change material using a thermal lattice Boltzmann method

From Energy Conversion and Management:

Experimental and numerical study of a vertical earth-to-air heat exchanger system integrated with annular phase change material

From Materials:

Thermal and Structural Characterization of Geopolymer-Coated Polyurethane Foam—Phase Change Material Capsules/Geopolymer Concrete Composites

From Applied Sciences:

Microstructure and Mechanical Properties of Cement Mortar Containing Phase Change Materials

Research roundup: Radiant floor heating system; mitigation of supercooling; hot water stratification; more

Ben Welter - Friday, March 08, 2019

From Energies:

Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water

From Applied Energy:

Supercooling of phase-change materials and the techniques used to mitigate the phenomenon

From Polymer Chemistry:

Encapsulating an organic phase change material within emulsion-templated poly(urethane urea)s

From AIP Advances:

Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials

From Journal of Materials Chemistry A:

A thermal energy storage composite with sensing function and its thermal conductivity and thermal effusivity enhancement

From Materials Science and Engineering:

Experimental Measurements of Hot Water Stratification in a Heat Storage Tank

From Thermochimica Acta:

Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles

From Energy and Buildings:

Thermal and Structural Performance of Geopolymer Concrete Containing Phase Change Material Encapsulated in Expanded Clay
An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates

From International Journal of Biological Macromolecules:

Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber

From Construction and Building Materials:

Thermal properties of lightweight concrete incorporating high contents of phase change materials

From Progress in Organic Coatings:

Fabrication and characterization of microencapsulated n-heptadecane with graphene/starch composite shell for thermal energy storage

From Sustainable Energy and Fuels:

A thermal energy storage prototype using sodium magnesium hydride

From Thermal Science and Engineering Progress:

Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications

From International Journal of Sports Physiology and Performance:

Exploring the Efficacy of a Safe Cryotherapy Alternative: Physiological Temperature Changes from Cold Water Immersion vs Prolonged Phase Change Material Cooling

From Applied Sciences:

A Form Stable Composite Phase Change Material for Thermal Energy Storage Applications over 700° C

PCM briefing: Energy Storage Europe includes sessions on thermal storage; C-Therm offers webinar on thermal performance of textiles

Ben Welter - Monday, March 04, 2019

• The Energy Storage Europe conference and trade fair, set for March 12-14 in Dusseldorf, Germany, includes a number of sessions on thermal energy storage: "Heat Storage - an essential contribution to energy transition," Oliver Baudson, TSK Flagsol Engineering GmbH; "Advanced Thermal Energy Storage Concepts," Dr. Robert Pitz-Paal, DLR Institute of Solar Research; "High Temperature Storage," Doron Brenmiller, Brenmiller Energy; "Material and Component Development for Thermal Energy Storage," Christoph Rathgeber, ZAE Bayern; and "Thermal Energy Storage for Cost-Effective Energy Management & CO2 Mitigation," Dr. Dan Bauer, German Aerospace Center - DLR e.V.

• The deadline for submitting paper proposals for next fall's Advanced Building Skins conference in Bern, Switzerland, is March 10. The list of topics includes thermal performance of phase change materials.

• Thermal battery maker Sunamp Ltd.'s collaboration with the University of Edinburgh’s School of Chemistry won the "Powerful Partnership" award at the Scottish Knowledge Exchange Awards 2019 last month. The organizations began work on the development of new phase change materials in 2010. 

• Croda International Plc has been recognized for its commitment to "a deforestation-free supply chain." Croda earned an A- in that category in CDP's climate change report for 2018, up from a B the previous year. The specialty chemical company says it has a special focus on palm oil and is committed to supplying RSPO-certified palm oil derivatives. 

• Thermal instrumentation maker C-Therm Technologies Ltd. is hosting a free webinar this week, "Quantifying Thermal Performance of Textiles (Warm Feel / Cool Touch)." The webinar, aimed at "anyone working in the product performance testing of textiles and fabrics where temperature regulation is an important function," will be held at 1 p.m. EST Wednesday.

Need a PCM coating on that coat? Ohio company has a solution

Ben Welter - Friday, March 01, 2019

Therma-SprayMCMENT Inc., an Ohio company that makes a PCM spray designed for use by consumers, launched a new website last month, teamapini.com, to market the product.

"We have been working on the Team Apini Therma-Spray product for a couple of years to give consumers a way to apply PCM technology to the clothing, bedding or other textile products they may already own," said Monte Magill, the company's senior vice president for PCM technologies. The coating is designed to absorb and release thermal energy to enhance thermal comfort.

"It is a water-based formulation containing microencapsulated PCMs and a heat curable binder material to affix the microPCMs to the various textile substrates," said Magill, who has worked in the PCM industry since the mid-1990s. "We do the final packaging in house but have the microPCMs and the binder formulation contract manufactured."

Therma-Spray-treated socks are also available on the site. The company has been selling Infinite R PCM products for the building and construction industry on its main site, mcmentinc.com, since 2016.

Magill says more retail products are in the pipeline: "Look for Team Apini thermal underwear, henleys, pillow cases and sheeting, a bunzy protector (seat cushion thermal protector for home, auto, camping, stadium, etc.), heating and cooling packs (for work, first responder and dietary applications) as well as an equestrian line we are working on now for both horse and rider (dressage focus)."

Research roundup: PCM wallboard; cement mortars; electric load shifting; red-mud geopolymer composite; more

Ben Welter - Wednesday, February 27, 2019

From Renewable Energy:

Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control

From Cement and Concrete Research:

Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars

From Journal of Molecular Liquids:

Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials

From Energy and Buildings:

Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: Experimental design and response surface approach

From International Journal of Photoenergy:

Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System

From Solar Energy:

Effects of sodium nitrate concentration on thermophysical properties of solar salts and on the thermal energy storage cost
Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector [pdf]

From Energies:

A Novel Encapsulation Method for Phase Change Materials with a AgBr Shell as a Thermal Energy Storage Material

From Advanced Composites and Hybrid Materials:

Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites

From International Journal of Refrigeration:

Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage

From Solar Energy Materials and Solar Cells:

Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage
Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review

From Buildings:

Thermal Performance of Hollow-Core Slab Ventilation System with Macro-Encapsulated Phase-Change Materials in Supply Air Duct

From International Journal of Heat and Mass Transfer:

Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence

From Journal of the Electrochemical Society:

Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material

From Energy:

High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries

PCM mats helped lift Virginia Tech to first place in Solar Decathlon

Ben Welter - Monday, February 18, 2019

FutureHAUS, front elevation

The Virginia Tech team that won first place in the 2018 Solar Decathlon Middle East credits a good share of its success to the deft use of phase change material donated by Insolcorp LLC of New London, N.C.

FutureHAUS, the lone U.S. entry, topped 13 other finalists and more than 60 total entrants in the competition organized by the U.S. Department of Energy and the United Arab Emirates’ Dubai Electricity & Water Authority. Australia's University of Wollongong finished second. The finals took place in November in the desert heat of Dubai.

Insolcorp donated 400 square feet of two types of Infinite R PCM mats. Both are salt hydrates, one with a melt point of 21 degrees Celsius, the other a melt point of 22 degrees C. The phase change material acts as a thermal battery, absorbing and releasing thermal energy as it solidifies and melts.

The Virginia Tech team deployed the mats in the plenum of its 900-square-foot solar-powered house. The PCM allowed the team to take advantage of a rule that limited the use of solar energy to 8kw at any one time, with one exception: Unlimited use of solar energy for air conditioning was allowed during daily inspection periods to assure visitor comfort. The PCM mats, solidified during those periods, helped keep the house comfortable at other times. That helped the FutureHAUS achieve the highest score in net energy use, a key metric in the competition.

Joseph Wheeler, AIA"Every team struggled with the 8kw limit," said Joseph Wheeler, right, lead faculty on FutureHAUS and co-director of Virginia Tech's Center for Design Research. "Typically, during peak energy, you would be generating lots and lots of power, which you could easily charge your batteries with, which you could easily run all your tasks, and you could feed the grid, and build up quite a bit of surplus so that you would remain energy positive throughout the two weeks of competition.

"But, since they limited inverter use at any one time to 8kw, it really put a limit to what our energy budget was. We saw phase change as batteries. A massive ton of batteries. ... It's more of a strategy for a competition than it is for a realized situation. But in a realized situation, we know the value of the PCM. Heat energy, cost of power being cheaper at night than during the day where you can charge your systems and load shift. Practically, PCMs make a lot of sense. And we wanted to have the PCMs in this house for practical reasons, not just for competition reasons. ...

"In simple terms, we eased the demand for the HVAC every afternoon. It was the hottest time of the day and it was also the time when we were getting less power from the solar panels because the sun was moving down. It was a critical time because we knew that once the sun went down, we had to survive on battery. And we had a limit. They limited every house to 15kw of battery."

FutureHAUS, kitchenThe FutureHAUS team finished in the top three in eight of the competition's 10 categories: first place in Architecture, House Functioning and Sustainable Transportation; second place in Sustainability and Innovation; and third place in Engineering/Construction, Energy Efficiency and Comfort Conditions.

The FutureHAUS entry was a two-year university-wide effort. More than 100 Virginia Tech students helped design and build the structure, with help from faculty members in architecture, urban studies, science, engineering and other departments.

The house consists of 18 modular  "cartridges" built inside a Virginia Tech research facility. It was first assembled on campus in Blacksburg, Va., last summer. After testing, it was disassembled, shipped to Dubai and then reassembled at the competition site in just two days. It has since been shipped back to Blacksburg, where it will undergo testing to measure its various energy-saving components.

"We now have a system in place where we can collect data and can truly test the performance," Wheeler said. "We know the PCM worked for us during the competition because we did have some temperature sensors in the ceiling. And so we were able to prove that we were reaching the pre-state when those PCMs were being charged. But we really want to collect a lot more data and look at it in real-world situations."

Research roundup: Self-luminous wood composite; palmitic acid/mullite composite; corrosion sensitivity of metal alloys; more

Ben Welter - Tuesday, February 12, 2019

From Energy Storage Materials:

Self-luminous wood composite for both thermal and light energy storage

From International Journal of Refrigeration:

The thermal performances of a refrigerator incorporating a Phase Change Material

From Renewable Energy:

Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage
An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages

From Energy Conversion and Management:

Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation
Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings

From Thermochimica Acta:

Experimental Investigation on Thermal Properties of Sodium Acetate Trihydrate based Phase Change Materials for Thermal Energy Storage
The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling

From Energy and Buildings:

Nano-encapsulation of phase change materials: from design to thermal performance, simulations and toxicological assessment
Investigation of phase change materials integrated with fin-tube baseboard convector for space heating

From Journal of Energy Storage:

Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger

From Applied Energy:

Numerical investigation of phase change material thermal storage for space cooling

From Journal of Materials Chemistry A:

Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal-conductivity and good shape-stability