Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Incubator uses PCM to keep lab samples at optimum temperatures

Ben Welter - Saturday, December 22, 2018

Intellectual Ventures’ Global Good fund has signed a licensing agreement with JP Selecta of Spain to manufacture and distribute a microbiological incubator for laboratories in areas with unreliable electrical power.

Incudigit SV 30LThe body of the Incudigit-SV 30L is lined with phase change material, enabling the device to maintain a user-adjustable temperature setpoint of 35° C, 36° C or 37° C for at least eight hours without power. 

“This incubator will help frontline health workers perform important culture-based microbiological tests in places where power is unreliable – a critical step in managing diseases like tuberculosis, sepsis, enteric and diarrheal diseases, and sexually-transmitted bacterial infections,” said Maurizio Vecchione, executive vice president of Global Good.

Three members of the Intellectual Ventures team that developed the incubator (Michael Friend, principal investigator; Simon Ghionea, senior researcher and electrical engineer; and Andy Miller, senior researcher and mechanical engineer) fielded questions about the device.

Q: What was your role in the development of the Incudigit-SV 30L?

A: The team came up with the initial concept, analyzed and designed the first-generation prototype, tested in the lab and the field and then transitioned the device to JP Selecta for the product development cycle. After the first product units were developed, the team then verified the performance of the units.

Q: What was the biggest challenge in developing the device?

Drawing of Incudigit SV 30 prototypeA: The device has to be able to support power blackouts which could occur with ambient conditions above and below the temperature setpoints (of which there are three), so developing a method to properly assess the state of the PCM was a challenge. Additionally, while the initial PCM chosen for the device had great performance at first, it was discovered that after repeated deep cycling that the enthalpy was depleting. This PCM could be recharged using an overheat procedure; however this imposed an unacceptable impact on the use case. We wound up having to change to a more stable PCM with slightly less performance than the original.

Q: Describe the typical user of the device.

A: The typical user is a medical technician/microbiologist in a laboratory which does not have reliable power. In most countries in the developing world this may be all the labs with the exception of the national reference laboratory.

Q: When will manufacturing/distribution begin?

A: With product launch this week, manufacturing/distribution is just beginning. The first units will be delivered to Doctors Without Borders for pilot tests in South Sudan and Niger in January as well as the African Medical and Research Foundation and the Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit. As this is allowing microbial culture to take place in labs where it previously could not occur, it will be difficult to estimate quantities.

Q: Describe how the device functions, especially how PCM is used. Does the device include a battery to provide active cooling and power the electronics when external power is not available?

A: The device uses PCM as a “thermal storage battery” in order to control the temperature (see reference paper http://medicaldevices.asmedigitalcollection.asme.org/article.aspx?articleid=2718461). A key feature is to maintain the PCM in a state such that it can maintain incubation setpoint temperatures at 35, 36, and 37 C during power blackouts with ambient conditions that can be above or below the setpoints. No active heating or cooling is used, only a small battery to maintain the electronics to perform temperature and power monitoring. [see YouTube video]

Q: What are the specs on the phase change material?

A: It's a paraffin with a peak melt point of 37 C and a thermal storage capacity of 160 joules per gram.

Q: How much PCM is used in each device?

A: 19 liters.

Research roundup: Thermo-regulating bamboo fabric; PCM emulsions; nanoparticle-enhanced composite; more

Ben Welter - Friday, November 30, 2018

From Journal of Cleaner Production:

Autonomous greenhouse microclimate through hydroponic design and refurbished thermal energy by phase change material

From Journal of Energy Storage:

Development of heat accumulation unit based on heterogeneous structure of MF/PCM for cogeneration units

From Textile Research Journal:

Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials

From International Journal of Clothing Science and Technology:

Development of thermo-regulating fabrics using PCM microcapsules with poly(methyl methacrylate-co-2-hydroxy ethyl methacrylate) shell and n-alkane core

From Canadian Society for Mechanical Engineering International Congress:

Preparation and Properties of Nanoparticle-enhanced Composite Phase Change Material with Ceramic Porous Media

From Solar Energy Materials and Solar Cells:

A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance

From 59th Conference on Simulation and Modelling:

Convective Melting Modeling Approach for Phase Change Materials with Variable Boundary Heating

From Energy Conversion and Management:

Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles

From International Journal of Energy Research:

Operation strategies guideline for packed bed thermal energy storage systems [pdf]

From Journal of Molecular Liquids:

Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation

From Energy:

Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard

Patent application: Cables made of phase change material

Ben Welter - Thursday, November 29, 2018

U.S. patent application 20180334775 (applicant E.I. du Pont de Nemours and Co., Wilmington, Del.):

"A phase change material (PCM) is useful for thermal management in various applications such as automotive, building, packaging, garments, and footwear, and in devices such as wires and cables. The cable described herein comprises a core and a PCM layer surrounding the core. The PCM layer comprises a PCM composition, which in turn comprises a 1,3-propanediol fatty acid ester. The core consists of a yarn, strand or wire made of a natural or synthetic polymeric material or a metal."

http://www.freepatentsonline.com/20180334775.pdf

Patent application: Thermal storage units and methods of making and using them

Ben Welter - Monday, November 12, 2018

U.S. patent application 20180320987 (applicant University of Texas Board of Regents, Austin, Texas):

"Sugar alcohol blends of galactitol and mannitol and compositions comprising such blends are disclosed as phase change materials (PCMs). A method of forming carbon nanotubes on a carbon substrate is described. Carbon substrates with carbon nanotubes, in particular, conformal layers of carbon nanotubes on carbon substrates, are also disclosed, as are methods of making and using these materials. Thermal storage units are also provided. The thermal storage units can comprise a heat exchange path through which a heat exchange medium flows, and a thermal storage medium in thermal contact with the heat exchange path."

http://www.freepatentsonline.com/20180320987.pdf

PCM briefing: RAL members to meet in Dusseldorf next week; reliability test completed at Morocco CSP plant

Ben Welter - Friday, November 09, 2018

• Members of the RAL Quality Association PCM will meet in Dusseldorf on Thursday, Nov. 15. The agenda includes discussions on quality and testing specifications; reference materials in calorimetry; PCM product certification; and the promotion of PCM products in the European Union, Germany, Netherlands and the United States.

A 10-day reliability test has been completed at the 150MW Noor Ouarzazate III concentrated solar power plant in Morocco. The plant's molten salt storage system is designed to produce electricity in the absence of sunlight for 7.5 hours. During the test, the plant output over 13.2 GWh to the grid.

Kathu Solar Park, the 100MW concentrated solar power plant in South Africa's Northern Cape Province, has begun generating steam, an important step in the plant's commissioning process. The plant uses molten salt to store heat from the solar field for up to 4.5 hours. The heat can be recovered to produce steam and generate electricity.

• The agenda is taking shape for the 3rd Sustainable Oils & Fats International Congress, to be held April 4-5, 2019, in Paris. Among the topics: "Sourcing & Production of Sustainable Oils & Fats" and "Creating, Maintaining, Controlling Sustainable Supply Chain." 

Emirates Central Cooling Systems Corp. says it is on track to establish the world’s largest district cooling project by increasing its capacity of district cooling in Business Bay, Dubai. Business Bay is now served by three major district cooling plants with a total capacity of 135,000 refrigeration tons. The addition of three more plants will bring the collective capacity to 350,000 RT.

Research roundup: Sodium acetate trihydrate; palm kernel vegetable fat; spiral-fin heat exchanger; gas flow through bed of granular PCM; more

Ben Welter - Tuesday, November 06, 2018

From Energy:

Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage

From Journal of Building Engineering:

The Palm Kernel Vegetable Fat: a Low-cost Bio-based Phase Change Material for Thermal Energy Storage in Buildings

From International Journal of Applied Engineering Research:

Carbonaceous Phase Change Nanocomposites: A low cost energy storage approach [pdf]

From Applied Mathematical Modelling:

Investigation of Phase Change in a Spiral-Fin Heat Exchanger

From Applied Energy:

Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays

From Materials Science and Engineering:

The characteristics of temperature fluctuations in thermal insulation covered with layer of PCM [pdf]

From Applied Thermal Engineering:

Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review

From International Journal of Heat and Mass Transfer:

Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage
Influence of gas compressibility on gas flow through bed of granular phase change material

From Journal of Energy Storage:

From International Journal of Refrigeration:

Investigating organic phase change behavior with thermal photography

Research roundup: Form-stable stearic acid PCM; spent diatomite from palm oil bleaching process; anisotrophic graphene aerogels; more

Ben Welter - Tuesday, October 30, 2018

From Journal of Thermal Analysis and Calorimetry:

Preparation and characterization of novel form stable phase change materials based on stearic acid

From Construction and Building Materials:

Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support

From Journal of Facade Design and Engineering:

Modelling Envelope Components Integrating Phase Change Materials (PCMs) with Whole-Building Energy Simulation Tools: A State of the Art [pdf]

From Renewable Energy:

Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis

From Advanced Functional Materials:

Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Real‐Time and Fast‐Charging Solar‐Thermal Energy Conversion

From Indoor and Built Environment:

The year-round thermal performance of a new ventilated Trombe wall integrated with phase change materials in the hot summer and cold winter region of China

From Energy:

Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance

From Advances in Material Science and Engineering:

Shape Stability of Polyethylene Glycol/Acetylene Black Phase Change Composites for Latent Heat Storage [pdf]

From Solar Energy:

Energy performance comparison of concentrated photovoltaic – Phase change material thermal (CPV-PCM/T) system with flat plate collector (FPC)

From Cogent Engineering:

Evaluation of a concrete-graphite hybrid mixture for low-cost thermal energy storage material

Patent application: Thermal energy storage systems

Ben Welter - Monday, October 29, 2018

PCES TES patent drawing

U.S. patent application 20180283800 (applicant Phase Change Energy Solutions Inc., Asheboro, N.C.):

"In one aspect, thermal energy storage systems are described herein. In some embodiments, a thermal energy storage system comprises a thermal energy storage system comprising a container and a heat exchange apparatus disposed within the container. The heat exchange apparatus comprises a tank, a manifold at least partially disposed within the tank, and a phase change material disposed within the tank and in thermal contact with the manifold."

http://www.freepatentsonline.com/20180283800.pdf

Research roundup: Synthesis of n-butyl palmitate; graphite as heat-transfer enhancer in high-temperature inorganic PCM; more

Ben Welter - Thursday, October 25, 2018

From Journal of Thermal Analysis and Calorimetry:

Synthesis and characterization of the n-butyl palmitate as an organic phase change material

From Renewable Energy:

Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer

From Synthesis, Technology and Applications of Carbon Nanomaterials:

Activated Carbon for Shape-Stabilized Phase Change Material

From Applied Energy:

Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage

From Energy and Technology Journal:

Enhancement of Thermal Storage Properties of Phase Change Material by Using Metallic Swarf [pdf]

From ACS Sustainable Chemistry & Engineering:

Fabrication and Characterization of Flame-Retardant Nanoencapsulated n-Octadecane with Melamine–Formaldehyde Shell for Thermal Energy Storage

From Energy Storage Materials:

Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage

From Materials Today: