Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Radiant floor heating system; mitigation of supercooling; hot water stratification; more

Ben Welter - Friday, March 08, 2019

From Energies:

Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water

From Applied Energy:

Supercooling of phase-change materials and the techniques used to mitigate the phenomenon

From Polymer Chemistry:

Encapsulating an organic phase change material within emulsion-templated poly(urethane urea)s

From AIP Advances:

Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials

From Journal of Materials Chemistry A:

A thermal energy storage composite with sensing function and its thermal conductivity and thermal effusivity enhancement

From Materials Science and Engineering:

Experimental Measurements of Hot Water Stratification in a Heat Storage Tank

From Thermochimica Acta:

Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles

From Energy and Buildings:

Thermal and Structural Performance of Geopolymer Concrete Containing Phase Change Material Encapsulated in Expanded Clay
An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates

From International Journal of Biological Macromolecules:

Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber

From Construction and Building Materials:

Thermal properties of lightweight concrete incorporating high contents of phase change materials

From Progress in Organic Coatings:

Fabrication and characterization of microencapsulated n-heptadecane with graphene/starch composite shell for thermal energy storage

From Sustainable Energy and Fuels:

A thermal energy storage prototype using sodium magnesium hydride

From Thermal Science and Engineering Progress:

Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications

From International Journal of Sports Physiology and Performance:

Exploring the Efficacy of a Safe Cryotherapy Alternative: Physiological Temperature Changes from Cold Water Immersion vs Prolonged Phase Change Material Cooling

From Applied Sciences:

A Form Stable Composite Phase Change Material for Thermal Energy Storage Applications over 700° C

Patent application: PCM reservoir equipped with filling tube for a motor vehicle heat exchanger

Ben Welter - Friday, March 08, 2019

U.S. patent application 20190072304 (applicant Valeo Systemes Thermiques, Le Mesnil St. Denis, France):

"The invention relates to a phase-change material reservoir for a heat exchanger of an air-conditioning installation of a vehicle, the reservoir being arranged between two reservoir plates and having filling means, characterized in that the filling means include at least one tube delimiting a filling channel arranged outside the reservoir against a first plate of the reservoir."

http://www.freepatentsonline.com/20190072304.pdf

Research roundup: PCM wallboard; cement mortars; electric load shifting; red-mud geopolymer composite; more

Ben Welter - Wednesday, February 27, 2019

From Renewable Energy:

Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control

From Cement and Concrete Research:

Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars

From Journal of Molecular Liquids:

Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials

From Energy and Buildings:

Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: Experimental design and response surface approach

From International Journal of Photoenergy:

Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System

From Solar Energy:

Effects of sodium nitrate concentration on thermophysical properties of solar salts and on the thermal energy storage cost
Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector [pdf]

From Energies:

A Novel Encapsulation Method for Phase Change Materials with a AgBr Shell as a Thermal Energy Storage Material

From Advanced Composites and Hybrid Materials:

Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites

From International Journal of Refrigeration:

Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage

From Solar Energy Materials and Solar Cells:

Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage
Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review

From Buildings:

Thermal Performance of Hollow-Core Slab Ventilation System with Macro-Encapsulated Phase-Change Materials in Supply Air Duct

From International Journal of Heat and Mass Transfer:

Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence

From Journal of the Electrochemical Society:

Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material

From Energy:

High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries

Research roundup: Self-luminous wood composite; palmitic acid/mullite composite; corrosion sensitivity of metal alloys; more

Ben Welter - Tuesday, February 12, 2019

From Energy Storage Materials:

Self-luminous wood composite for both thermal and light energy storage

From International Journal of Refrigeration:

The thermal performances of a refrigerator incorporating a Phase Change Material

From Renewable Energy:

Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage
An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages

From Energy Conversion and Management:

Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation
Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings

From Thermochimica Acta:

Experimental Investigation on Thermal Properties of Sodium Acetate Trihydrate based Phase Change Materials for Thermal Energy Storage
The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling

From Energy and Buildings:

Nano-encapsulation of phase change materials: from design to thermal performance, simulations and toxicological assessment
Investigation of phase change materials integrated with fin-tube baseboard convector for space heating

From Journal of Energy Storage:

Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger

From Applied Energy:

Numerical investigation of phase change material thermal storage for space cooling

From Journal of Materials Chemistry A:

Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal-conductivity and good shape-stability

Patent application: Aliphatic materials in heating and cooling applications

Ben Welter - Wednesday, February 06, 2019

U.S. patent application 20190033009 (applicant Elevance Renewable Sciences Inc., Woodridge, Ill.):

"Aliphatic materials and their use in passive heating and cooling applications are generally disclosed. In some embodiments, dibasic acids and esters (diesters) thereof and their use in passive heating and cooling applications are disclosed. In some embodiments, C18 dibasic acids and esters thereof are disclosed, including their use in passive heating and cooling applications. In some embodiments, various olefins, including alkenes and olefinic acids and esters, are disclosed, including their use in passive heating and cooling applications."

http://www.freepatentsonline.com/20190033009.pdf

Research roundup: Thermal conductivity; decarbonization potential of compact heat storage; liquid desiccant cooling systems; more

Ben Welter - Wednesday, February 06, 2019

From Energy:

Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems

From Renewable Energy:

Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe

From Applied Thermal Engineering:

Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK
Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing
A novel composite phase change material with paraffin wax in tailings porous ceramics
Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems
Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating

From Environmental Research:

Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials

From Colloids and Surfaces A:

A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices

From Microporous and Mesoporous Materials:

Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance

From Applied Energy:

Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne

From Building and Environment:

Comparative analysis of the PCM application according to the building type as retrofit system

From Construction and Building Materials:

Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete

From Results in Physics:

Application Research of Nano-storage Materials in Cold Chain Logistics of E-commerce Fresh Agricultural Products

From Journal of Energy Storage:

Using PCM as energy storage material in water tanks: Theoretical and experimental investigation

Research roundup: Micro environmental control system; alkali nitrate salts; sodium thiosulfate pentahydrate; more

Ben Welter - Tuesday, January 22, 2019

From Journal of Thermal Science and Engineering :

Phase Change Material Freezing in an Energy Storage Module for a Micro Environmental Control System
Phase Change Material Melting in an Energy Storage Module for a Micro Environmental Control System

From Renewable Energy:

Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage
Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage

From Applied Energy:

Effect of inclination on the thermal response of composite phase change materials for thermal energy storage

From Solar Energy Materials and Solar Cells:

Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage
Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness

From Energy:

Numerical investigations of optimal phase change material incorporated into ventilated walls

From Polymer Degradation and Stability:

EG-based coatings for flame retardance of shape stabilized phase change materials

From Construction and Building Materials:

Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil

SendDiscard

Patent application: Radiative cooling with solar spectrum reflection

Ben Welter - Tuesday, January 22, 2019

U.S. patent application 20190017758 (applicant Board of Trustees of Stanford University, Stanford, Calif.):

"Aspects of the present disclosure are directed toward radiative cooling with solar spectrum reflection. In certain more specific embodiments, a structure facilitates far-field radiation at particular wavelengths while blocking radiation at solar wavelengths. Additionally, aspects of the present disclosure allow for twenty-four hour cooling of buildings and similar structures, and for cooling through a heat exchange to other liquid, gases, or solids. ... The heat exchange interface may further interface with phase-change materials either directly or indirectly to allow for thermal storage driven by the radiative properties of the plurality of different materials."

http://www.freepatentsonline.com/20190017758.pdf

Research roundup: Solar storage tank; concentric PCM module; supercooling degree improvement; more

Ben Welter - Monday, January 21, 2019

From Journal of Thermal Science:

Energy Storage Performance of a PCM in the Solar Storage Tank

From International Journal of Applied Engineering Research:

Numerical assessment of suitability of phase-change materials in a concentric PCM-module for thermal storage applications [pdf]

From International Journal of Energy Research:

Experimental measurements and numerical computation of nanofluid and microencapsulated phase change material in porous material

From IOP Conference Series: Materials Science and Engineering:

Nano-enhanced phase change material effects on the supercooling degree improvement: A review

From Renewable Energy:

Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings

From Journal of Mechanical Engineering and Technology:

Thermal performance analysis of nano enhanced paraffin wax and myristic acid

From Solar Energy:

Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials
Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison

From Solar Energy Materials and Solar Cells:

Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell

From Thermal Science and Engineering Progress:

Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials

From International Journal of Heat and Mass Transfer:

The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change

From Applied Energy:

Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

From AIP Conference Proceedings:

Preparation and characterization of nanoparticle blended polymers for thermal energy storage applications

PCM briefing: CEO Hopkins leaves Ice Energy; 1414 Degrees says TESS-IND commissioning verified

Ben Welter - Monday, January 21, 2019

Mike HopkinsMike Hopkins, right, CEO of Ice Energy since 2014, has left the Riverside, Calif., company to pursue a "soon to be revealed" opportunity. Ice Energy makes ice-based thermal energy storage systems. According to an Ice Energy representative: "Dr. Marcel Christians (previously CIO) and Alex Collins (VP at Pacific Advantage Capital, majority shareholder in Ice Energy) have joined together to lead the company as co-COOs. Other than that, it’s business as usual as the company pushes most of its resources towards finding viable candidates for its 20+ MW thermal energy storage contract with major California utility, Southern California Edison."

AIMPLAS, a plastics technology center in Spain, is among 10 participants in a European project led by the Polytechnic University of Valencia. The consortium is developing new components for geothermal systems offering high thermal-conductivity properties.  

1414 Degrees Ltd. has announced that the commissioning of the Australian company's TESS-IND has been verified by Bureau Veritas. In three- and eight-hour test runs, the molten silicon heat store powered the system's turbine to generate average electricity outputs of 104kW and 148kW. "The maximum verified temperature of the phase change material heat store was 1418 degrees Celsius," the company said.