Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Solar storage tank; concentric PCM module; supercooling degree improvement; more

Ben Welter - Monday, January 21, 2019

From Journal of Thermal Science:

Energy Storage Performance of a PCM in the Solar Storage Tank

From International Journal of Applied Engineering Research:

Numerical assessment of suitability of phase-change materials in a concentric PCM-module for thermal storage applications [pdf]

From International Journal of Energy Research:

Experimental measurements and numerical computation of nanofluid and microencapsulated phase change material in porous material

From IOP Conference Series: Materials Science and Engineering:

Nano-enhanced phase change material effects on the supercooling degree improvement: A review

From Renewable Energy:

Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings

From Journal of Mechanical Engineering and Technology:

Thermal performance analysis of nano enhanced paraffin wax and myristic acid

From Solar Energy:

Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials
Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison

From Solar Energy Materials and Solar Cells:

Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell

From Thermal Science and Engineering Progress:

Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials

From International Journal of Heat and Mass Transfer:

The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change

From Applied Energy:

Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

From AIP Conference Proceedings:

Preparation and characterization of nanoparticle blended polymers for thermal energy storage applications

PCM briefing: CEO Hopkins leaves Ice Energy; 1414 Degrees says TESS-IND commissioning verified

Ben Welter - Monday, January 21, 2019

Mike HopkinsMike Hopkins, right, CEO of Ice Energy since 2014, has left the Riverside, Calif., company to pursue a "soon to be revealed" opportunity. Ice Energy makes ice-based thermal energy storage systems. According to an Ice Energy representative: "Dr. Marcel Christians (previously CIO) and Alex Collins (VP at Pacific Advantage Capital, majority shareholder in Ice Energy) have joined together to lead the company as co-COOs. Other than that, it’s business as usual as the company pushes most of its resources towards finding viable candidates for its 20+ MW thermal energy storage contract with major California utility, Southern California Edison."

AIMPLAS, a plastics technology center in Spain, is among 10 participants in a European project led by the Polytechnic University of Valencia. The consortium is developing new components for geothermal systems offering high thermal-conductivity properties.  

1414 Degrees Ltd. has announced that the commissioning of the Australian company's TESS-IND has been verified by Bureau Veritas. In three- and eight-hour test runs, the molten silicon heat store powered the system's turbine to generate average electricity outputs of 104kW and 148kW. "The maximum verified temperature of the phase change material heat store was 1418 degrees Celsius," the company said.

Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:


From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production:

Patent application: Thermal storage system and temperature controlled container

Ben Welter - Thursday, January 03, 2019

U.S. patent application 20190003781 (applicants University of Ghent, Belgium; Colruyt Group, Halle, Belgium):

"Passive thermal storage systems and methods comprising at least one thermal storage module for storing thermal energy in a predetermined temperature range, are disclosed. The thermal storage module comprises an FT unit and a Heat Storage (HS) unit at least partially filled with a first Phase Change Material (PCM). The HS unit comprises a container. The thermal storage module may be in the form of a stacked structure comprising the FT unit having a first wall with a first heat exchange surface and the HS unit having a second wall with a second heat exchange surface, the first and second heat exchange surfaces being in thermal contact with each other. The thermal storage system may be used to maintain the temperature of the payload of a temperature controlled container at a predetermined value or within a predetermined range."

http://www.freepatentsonline.com/20190003781.pdf

Patent application: Inverse latent heat thermal energy storage system

Ben Welter - Thursday, January 03, 2019

U.S. patent application 20190003782 (applicant UChicago Argonne LLC, Chicago, Ill. ):

UChicago Argonne patent drawing"The invention provides a method for storing and releasing heat having the steps of thermally contacting thermal transfer fluid to a mixture of foam and phase change material for a time sufficient for the material to change from a first phase to a second phase during a time when electricity rates are at a first price point; maintaining said material in the second phase until electricity rates are at a second point, wherein the second point is higher than the first price point; and thermally contacting the thermal transfer fluid to the composite in the second phase for a time sufficient for the material to change from the second phase to the first phase. The invention also provides an energy storage module having a mixture of phase change material and high surface area substrate."

http://www.freepatentsonline.com/20190003782.pdf

Research roundup: Transparent insulation material wall with PCM; industrial waste heat recovery; cotton-derived carbon sponge; more

Ben Welter - Wednesday, December 26, 2018

From Energy:

Energy performance and economic analysis of a TIM-PCM wall under different climates

From Applied Energy:

A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting
Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage

From Solar Energy:

Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage

From Solar Energy Materials and Solar Cells:

Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization
Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity
Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties

From Energy and Buildings:

Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM
Optimization of phase change materials (PCMs) to improve energy performance within thermal comfort range in the South Korean climate

From Journal of King Saud University - Science:

Exact and approximate solutions of a phase change problem with the moving phase change material and variable thermal coefficients

From Journal of Molecular Liquids:

Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite

From International Journal of Refrigeration:

Supercooling characteristics of phase change material particles within phase change emulsions
Enhancement of ice formation around vertical finned tubes for cold storage applications

Research roundup: Solidification/subcooling in spherical capsule; cement-based thermal storage; heat transfer in flexible container; more

Ben Welter - Friday, December 21, 2018

From International Journal of Refrigeration:

Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications

From Construction and Building Materials:

Thermal energy storage characterization of cement-based systems containing microencapsulated-PCMs

From Renewable and Sustainable Energy Reviews:

Seasonal thermal energy storage system for cold climate zones: A review of recent developments

From Heat and Mass Transfer:

Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container

From Energy Conversion and Management:

Plate type heat exchanger for thermal energy storage and load shifting using phase change material

From Applied Thermal Engineering:

Experimental studies on the charging performance of single-tank single-medium thermal energy storage
Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology
Financial and energetic evaluation of solar-assisted heat pump underfloor heating systems with phase change materials

From IOP Conference Series: Materials Science and Engineering:

Thermal Performance Through the Use of Radiant Barrier and Phase Change Material in Concrete Flat Roofs

From Solar Energy Materials and Solar Cells:

Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage

From International Journal of Heat and Mass Transfer:

Development of vacuum impregnation equipment and preparation of mass/uniform shape-stabilized phase change materials

PCM briefing: McGill joins Phase Change Energy Solutions as CEO; Croda is No. 3 on Britain's Most Admired Companies list

Ben Welter - Friday, December 21, 2018

Dennis McGillDennis McGill, operations advisor at Pegasus Capital Advisors, has joined Phase Change Energy Solutions as chief executive officer and chairman of the board. McGill, right, has more than 30 years of experience in senior financial and executive leadership roles. For the past three years, he has been the CEO and chairman of the board for ReCommunity Recycling of Charlotte, N.C. 

Malta Inc., a spinoff of Alphabet’s Moonshot Factory, has raised $26 million in Series A funding. The Massachusetts company is developing an electro-thermal energy storage system that stores energy in the form of the thermal differential between hot and cold storage media. 

Croda International, maker of phase change materials and other specialty chemicals, is No. 3 on Management Today's list of Britain's Most Admired Companies 2018. Diageo and McDonald's took the top two spots.

• From Andrew Chang, regional operations director at Ice Energy, on LinkedIn: "Today was a major milestone for Ice Energy. We commissioned our 100th Ice Bear in the SCE LCR program in #OrangeCounty! We are currently offsetting about 1.5MW for 4 hours every day in Orange County."

MIT researchers have developed a way to use light to trigger the storage and release of waste heat from car engines and other sources. "Once melted and activated by ultraviolet light, the [phase change] material stores the absorbed heat until a beam of visible light triggers solidification and heat release," Phys.org reports. "Key to that control are added molecules that respond to light by changing shape from one that impedes solidification to one that permits it."

Nebu Block T10• Via LinkedIn: "It might not look like it, but this is how VIPs help to store energy. Vacuum insulated panels, that is. ZAE Bayern cooperates with va-Q-tec, Nebuma GmbH, Verallia, and Lungmuß Feuerfest to make industrial high-temperature energy storages more efficient and less hard to find." Nebuma's 20-foot mobile container, shown at right, is designed to store about 16 MWh of heat at a temperature of 1,000 degrees Celsius.

Dr. Yixiang Gan of the University of Sydney is among 11 researchers to win fellowships from the Australia-India Strategic Research Fund for 2019. His focus: "Optimizing thermal energy storage with phase change materials: with applications to solar energy storage in Australia and India." 

• Registration is open for the 44th Stanford Geothermal Workshop, to be held Feb. 11-13 at Stanford University in California.

• Registration is open for Energy Storage Europe, "the leading international trade fair for energy storage," to be held March 12-14 in Dusseldorf, Germany. 

• The 14th Conference on Advanced Building Skins, to be held Oct. 28-29, 2019, in Bern, Switzerland, has issued a call for papers. The deadline for submissions is June 1. Registration for the conference is expected to open once the program is published in April. 

Pelican BioThermal has appointed Lynaye Reynolds as worldwide director of quality. She joined the company three years ago as the quality manager at its site in Leighton Buzzard in the United Kingdom.

1414 Degrees’ molten silicon biogas energy storage system will be installed at a wastewater treatment plant in South Australia. The $3.2 million (AUS) pilot project is a joint effort of 1414 Degrees and SA Water.

PCM briefing: Virginia Tech takes first place in Solar Decathlon; Pluss is expanding R&D team

Ben Welter - Monday, December 10, 2018

Virginia Tech's FutureHAUS team has won first place in the 2018 Solar Decathlon Middle East, a competition organized by the U.S. Department of Energy and the United Arab Emirates’ Dubai Electricity & Water Authority. The lone American team topped 14 other finalists and more than 60 total entrants. The team said its use of phase change material in the solar-powered home set it apart from the competition. Look for an interview with Joseph Wheeler, an architecture professor who directs Virginia Tech's FutureHAUS research program, in the next issue of Phase Change Matters.

• Via LinkedIn: "Pluss Advanced Technologies Pvt. Ltd. is hashtag#Expanding its hashtag#Research team for hashtag#PCM Business. Chemistry Graduates with 0-2 years of experience preferred. However, others will be considered too. Usual job descriptions apply! Want to understand more about the opportunity? Please write to Ruchika Garg at jobs@pluss.co.in. Hurry! The vacancies are limited."

• U.S. and German researchers who have studied a PCM alloy made from germanium, antimony and tellurium say liquid water and liquid PCMs may have the same underlying physics. "The experiments reveal that the so-called Stokes-Einstein relation, which connects the viscosity of a liquid to the diffusion coefficient of its molecules, appears to break down above the melting point of the material and at very low viscosities – just as in water," Physics World reports. "The result will be important when making phase-change memories from GeSbTe alloys and related PCMs in the future."

CleanTechnica's Tina Casey takes a deep dive into the U.S. Department of Energy's efforts to develop next-generation, long-duration energy storage systems. Her conclusion: "The new R&D program practically guarantees that the hurt will continue for coal miners, their families and their communities long after Trump leaves office."  

kW Engineering of Oakland, Calif., offers tips on how to use a famously complex energy modeling program: "Best Practices for Successful Building Energy Modeling with EnergyPlus." 

Agenda set for 6th Swiss symposium on thermal energy storage

Ben Welter - Monday, December 03, 2018

The agenda is confirmed for the 6th Swiss Symposium Thermal Energy Storage, to be held in Lucerne, Switzerland, on Jan. 25, 2019. The symposium will focus on seasonal storage systems and the sector coupling of power and heat. Here are the speakers and topics:

• "Heat Storage in Switzerland": Elimar Frank, Frank Energy GmbH, Switzerland

• "Thermal Energy Storage, one Key Element to link Energy Sectors": Peter Schossig, Fraunhofer Institute for Solar Energy Systems ISE, Germany

• "Enhanced Phase-Change Materials for Heat-Storage applications": Colin Pulham, School of Chemistry, University of Edinburgh, United Kingdom

• "High-Temperature Latent Heat Storage and Applications": Dan Bauer, German Aerospace Center (DLR), Stuttgart, Germany

• "High-Temperature Phase Change Materials": Yulong Ding, University of Birmingham, United Kingdom

• "Network Convergence and Sector Coupling at St. Galler Stadtwerke": Simon Schoch, St. Galler Stadtwerke, Switzerland

• "Heat4Cool – Multienergy Solutions for Heating & Cooling": Marcello Aprile, Politecnico di Milano and Philipp Schütz, Lucerne School of Engineering and Architecture, Switzerland

• "Large-Scale Thermal Energy Storage and Multi-Energy Networks in Vienna": Robert Hammerling, Wien Energie GmbH, Austria

• "Current and Future Use of Seasonal Thermal Storage in Ground Heat Exchangers": A Swedish Perspective: José Acuña, KTH Royal Institute of Technology, Sweden

• "Avoided System Cost for Grid Reinforcement and Peaker Plants by using Ecovat Seasonal Thermal Energy Storage": Aris de Groot, Ecovat Renewable Energy Technologies, Netherlands

• "Optimization of Seasonal Thermal Energy Storage Systems for Buildings": Willy Villasmil, Lucerne School of Engineering and Architecture, Switzerland

• "Seasonal Hot Water Storage with Vacuum Super Insulation": Matthias Demharter, Bayerisches Zentrum für Angewandte Energieforschung ZAE, Germany

The registration fee is 300 Swiss francs. Lunch is included. The 2018 symposium drew more than 100 participants.

https://www.hslu.ch/en/lucerne-school-of-engineering-architecture/campus/veranstaltungen/2019/01/25/cctes-sstes19