Phase Change Matters RSS


The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.




Research roundup: Thermal conductivity; decarbonization potential of compact heat storage; liquid desiccant cooling systems; more

Ben Welter - Wednesday, February 06, 2019

From Energy:

Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems

From Renewable Energy:

Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe

From Applied Thermal Engineering:

Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK
Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing
A novel composite phase change material with paraffin wax in tailings porous ceramics
Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems
Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating

From Environmental Research:

Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials

From Colloids and Surfaces A:

A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices

From Microporous and Mesoporous Materials:

Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance

From Applied Energy:

Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne

From Building and Environment:

Comparative analysis of the PCM application according to the building type as retrofit system

From Construction and Building Materials:

Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete

From Results in Physics:

Application Research of Nano-storage Materials in Cold Chain Logistics of E-commerce Fresh Agricultural Products

From Journal of Energy Storage:

Using PCM as energy storage material in water tanks: Theoretical and experimental investigation

Research roundup: Micro environmental control system; alkali nitrate salts; sodium thiosulfate pentahydrate; more

Ben Welter - Tuesday, January 22, 2019

From Journal of Thermal Science and Engineering :

Phase Change Material Freezing in an Energy Storage Module for a Micro Environmental Control System
Phase Change Material Melting in an Energy Storage Module for a Micro Environmental Control System

From Renewable Energy:

Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage
Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage

From Applied Energy:

Effect of inclination on the thermal response of composite phase change materials for thermal energy storage

From Solar Energy Materials and Solar Cells:

Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage
Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness

From Energy:

Numerical investigations of optimal phase change material incorporated into ventilated walls

From Polymer Degradation and Stability:

EG-based coatings for flame retardance of shape stabilized phase change materials

From Construction and Building Materials:

Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil


Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:

From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production:

Research roundup: Thermally modulated fiber sorbents; metamaterial-based radiative cooling; stearic–capric acid/porous nanoceramics; more

Ben Welter - Friday, January 04, 2019

From Industrial & Engineering Chemistry Research:

Development of Phase-Change-Based Thermally Modulated Fiber Sorbents

From ChemistrySelect:

Preparation and Thermal Properties of 1‐Hexadecanol‐Palmitic Acid Eutectic Mixture/Activated Carbon Composite Phase Change Material for Thermal Energy Storage

From Energies:

Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications [pdf]
Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling [pdf]

From Renewable and Sustainable Energy Reviews:

A review and evaluation of thermal insulation materials and methods for thermal energy storage systems

From Materials Letters:

Stearic–capric acid/porous nanoceramics as a novel form-stable composite phase change material (FSPCM) for thermal energy storage

From International Refrigeration and Air Conditioning Conference:

Analysis of TES with PCM (Solid/Liquid) Integrated in a Residential System
Experimental Study on Portable Air-Conditioning System with Enhanced PCM Condenser

Research roundup: Transparent insulation material wall with PCM; industrial waste heat recovery; cotton-derived carbon sponge; more

Ben Welter - Wednesday, December 26, 2018

From Energy:

Energy performance and economic analysis of a TIM-PCM wall under different climates

From Applied Energy:

A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting
Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage

From Solar Energy:

Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage

From Solar Energy Materials and Solar Cells:

Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization
Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity
Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties

From Energy and Buildings:

Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM
Optimization of phase change materials (PCMs) to improve energy performance within thermal comfort range in the South Korean climate

From Journal of King Saud University - Science:

Exact and approximate solutions of a phase change problem with the moving phase change material and variable thermal coefficients

From Journal of Molecular Liquids:

Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite

From International Journal of Refrigeration:

Supercooling characteristics of phase change material particles within phase change emulsions
Enhancement of ice formation around vertical finned tubes for cold storage applications

Research roundup: Dynamic building envelope; multilayer glazing facades; spherical capsule with pin-fins; more

Ben Welter - Wednesday, December 05, 2018

From Applied Energy:

Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
Influence of the storage period between charge and discharge in a latent heat thermal energy storage system working under partial load operating conditions
Dynamic building envelope with PCM for cooling purposes – Proof of concept

From Air Force Research Laboratory:

High Energy Advanced Thermal Storage (HEATS) [pdf]

From Solar Energy:

Synthesis and characterization of sensible thermal heat storage mixture containing phosphate compound of cobalt and sodium
Thermal performance of non-ventilated multilayer glazing facades filled with phase change material

From Applied Thermal Engineering:

Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: An experimental investigation
Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage
A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management

From Materials:

Characterization of MgCl2·6H2O-Based Eutectic/Expanded Perlite Composite Phase Change Material with Low Thermal Conductivity

From Solar Energy Materials and Solar Cells:

Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage

From Energy Procedia:

Life Cycle Assessment of thermal energy storage materials and components

From MATEC Web of Conferences:

A Numerical Method for Analysing Heat Conduction in Composites Containing Encapsulated Phase Change Materials [pdf]

From Journal of Building Engineering:

Research roundup: Thermo-regulating bamboo fabric; PCM emulsions; nanoparticle-enhanced composite; more

Ben Welter - Friday, November 30, 2018

From Journal of Cleaner Production:

Autonomous greenhouse microclimate through hydroponic design and refurbished thermal energy by phase change material

From Journal of Energy Storage:

Development of heat accumulation unit based on heterogeneous structure of MF/PCM for cogeneration units

From Textile Research Journal:

Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials

From International Journal of Clothing Science and Technology:

Development of thermo-regulating fabrics using PCM microcapsules with poly(methyl methacrylate-co-2-hydroxy ethyl methacrylate) shell and n-alkane core

From Canadian Society for Mechanical Engineering International Congress:

Preparation and Properties of Nanoparticle-enhanced Composite Phase Change Material with Ceramic Porous Media

From Solar Energy Materials and Solar Cells:

A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance

From 59th Conference on Simulation and Modelling:

Convective Melting Modeling Approach for Phase Change Materials with Variable Boundary Heating

From Energy Conversion and Management:

Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles

From International Journal of Energy Research:

Operation strategies guideline for packed bed thermal energy storage systems [pdf]

From Journal of Molecular Liquids:

Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation

From Energy:

Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard

Patent application: Multi-circuited phase change composite heat exchangers

Ben Welter - Thursday, November 29, 2018

U.S. patent application 20180340738 (applicant Alliance for Sustainable Energy LLC, Golden, Colo.):

"Disclosed herein are multi-circuit thermal energy storage (TES) systems connected in heating, ventilation, and air conditioning (HVAC) systems. The two circuits (a refrigeration circuit and a secondary fluid circuit) are designed to work together, but they might contain separate units. In certain configurations, the TES system may use a phase change composite (PCC) with high thermal conductivity, which allows for efficient heat transfer within the PCC. Thus, the PCC itself may be used as the heat transfer media between a refrigerant and a secondary fluid, allowing the refrigerant/secondary fluid heat exchanger in typical configurations of HVAC systems to be removed."

Research roundup: Synthesis of n-butyl palmitate; graphite as heat-transfer enhancer in high-temperature inorganic PCM; more

Ben Welter - Thursday, October 25, 2018

From Journal of Thermal Analysis and Calorimetry:

Synthesis and characterization of the n-butyl palmitate as an organic phase change material

From Renewable Energy:

Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer

From Synthesis, Technology and Applications of Carbon Nanomaterials:

Activated Carbon for Shape-Stabilized Phase Change Material

From Applied Energy:

Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage

From Energy and Technology Journal:

Enhancement of Thermal Storage Properties of Phase Change Material by Using Metallic Swarf [pdf]

From ACS Sustainable Chemistry & Engineering:

Fabrication and Characterization of Flame-Retardant Nanoencapsulated n-Octadecane with Melamine–Formaldehyde Shell for Thermal Energy Storage

From Energy Storage Materials:

Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage

From Materials Today:

Patent application: Flexible phase change material composite for thermal management systems

Ben Welter - Monday, October 22, 2018

U.S. patent application 20180298261 (applicant AllCell Technologies, Chicago, Ill.):

"A thermal management composite, comprising a phase change material within a carbon or graphite matrix. The matrix is coated with a polymer coating to improve flexibility. The matrix can be a molded carbon or graphite material or a carbon or graphite cloth."