Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Micro/nano PCM for solar thermal applications; photovoltaic cooling; beeswax emulsions; more

Ben Welter - Thursday, March 21, 2019

From Renewable Energy:

Review on micro/nano phase change materials for solar thermal applications

From Jordan Journal of Mechanical and Industrial Engineering :

Photovoltaic Cooling Using Phase Change Material

From Advanced Materials Interfaces:

Phase Change Materials: Superhydrophobic Coatings from Beeswax‐in‐Water Emulsions with Latent Heat Storage Capability

From Energy Storage:

Experimental Observations on the Interface Front of Phase Change Material inside Cylindrical Cavity

From Applied Energy:

Effect of different dimensional carbon materials on the properties and application of phase change materials: A review

Research roundup: Personal cooling system; optimization of active wall system; cement mortar; asphalt pavement; more

Ben Welter - Friday, March 15, 2019

From International Journal of Refrigeration:

Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling

JMR illustration of microencapsulated n-octadecane with silk From Journal of Materials Research:

Fabrication and characterization of microencapsulated n-octadecane with silk fibroin–silver nanoparticles shell for thermal regulation

From IOP Conference Series: Earth and Environmental Sciences:

Simple Thermal Energy Storage Tank for Improving the Energy Efficiency of an Existing Air-conditioning System
An optimization study into thermally activated wall system with latent heat thermal energy storage
Simulation of operation performance of a solar assisted ground heat pump system with phase change thermal storage for heating in a rural building in Xi'an
Experimental Study on the Demand Shifting Effects of PCM Integrated Air-Conditioning Duct

From International Journal of Energy Research:

Efficiency optimisation of the thermal energy storage unit in the form of the ceiling panel for summer conditions

From Materials Research Express:

Experimental study on thermal conductivity of composite phase change material of fatty acid and paraffin

From Energies:

Design Optimization of a Hybrid Steam-PCM Thermal Energy Storage for Industrial Applications

From Construction and Building Materials:

Analysis of thermoregulation indices on microencapsulated phase change materials for asphalt pavement

From Applied Thermal Engineering:

Experimental and numerical characterization of an impure phase change material using a thermal lattice Boltzmann method

From Energy Conversion and Management:

Experimental and numerical study of a vertical earth-to-air heat exchanger system integrated with annular phase change material

From Materials:

Thermal and Structural Characterization of Geopolymer-Coated Polyurethane Foam—Phase Change Material Capsules/Geopolymer Concrete Composites

From Applied Sciences:

Microstructure and Mechanical Properties of Cement Mortar Containing Phase Change Materials

Patent application: Dimensionally stable phase change material

Ben Welter - Friday, March 15, 2019

U.S. patent application 20190078006 (applicant Microtek Laboratories Inc., Dayton, Ohio):

"Methods for producing a dimensionally stable phase change material (PCM), and dimensionally stable PCMs are disclosed. The methods include providing a porous base material, mixing a phase change material having a polar functional group with a substance that increases the polar attraction of the phase change material for the porous base material to form a mixture thereof; and, thereafter, mixing the mixture with the porous base material until a selected saturation of phase change material in the porous base material is reached. The methods may include filtering the porous base material after the selected saturation is reached to form a cake of dimensionally stable PCM and, thereafter, reducing the size of the dimensionally stable PCM to an average mean particle size of about 10 to about 50 μm, or more preferably 20 to 30 μm."

http://www.freepatentsonline.com/20190078006.pdf

Microtek introduces new PCM built with nextek encapsulation technology

Ben Welter - Monday, March 11, 2019

Microtek Laboratories of Dayton, Ohio, has developed a new microencapsulated phase change material designed for use in bedding, building materials and consumer textiles.

The biobased PCM, vivtek 29, is offered in wet cake form. It has a melting point of 31º Celsius and a thermal storage capacity of 170 joules per gram. The mean particle size is 14-24 microns.

Microtek says the new product, built using the company’s patented nextek encapsulation technology, “combines robustness, high thermal stability and easy dispersibility” in an aqueous solution and is "less flammable than traditional PCMs." The company quietly introduced vivtek in July 2018.

Microtek President Tim Riazzi says the company has “several projects in the development phase” that use the nextek encapsulation technology.

“Interest in consumer applications [for vivtek] is very good,” Riazzi said. “As with general consumer desires, more and more of our partners are looking and asking for sustainable and bio-based options to add to their product lines.”

https://www.microteklabs.com/blog/introducing-vivtek-29

Research roundup: PCM wallboard; cement mortars; electric load shifting; red-mud geopolymer composite; more

Ben Welter - Wednesday, February 27, 2019

From Renewable Energy:

Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control

From Cement and Concrete Research:

Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars

From Journal of Molecular Liquids:

Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials

From Energy and Buildings:

Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: Experimental design and response surface approach

From International Journal of Photoenergy:

Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System

From Solar Energy:

Effects of sodium nitrate concentration on thermophysical properties of solar salts and on the thermal energy storage cost
Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector [pdf]

From Energies:

A Novel Encapsulation Method for Phase Change Materials with a AgBr Shell as a Thermal Energy Storage Material

From Advanced Composites and Hybrid Materials:

Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites

From International Journal of Refrigeration:

Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage

From Solar Energy Materials and Solar Cells:

Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage
Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review

From Buildings:

Thermal Performance of Hollow-Core Slab Ventilation System with Macro-Encapsulated Phase-Change Materials in Supply Air Duct

From International Journal of Heat and Mass Transfer:

Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence

From Journal of the Electrochemical Society:

Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material

From Energy:

High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries

Research roundup: Self-luminous wood composite; palmitic acid/mullite composite; corrosion sensitivity of metal alloys; more

Ben Welter - Tuesday, February 12, 2019

From Energy Storage Materials:

Self-luminous wood composite for both thermal and light energy storage

From International Journal of Refrigeration:

The thermal performances of a refrigerator incorporating a Phase Change Material

From Renewable Energy:

Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage
An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages

From Energy Conversion and Management:

Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation
Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings

From Thermochimica Acta:

Experimental Investigation on Thermal Properties of Sodium Acetate Trihydrate based Phase Change Materials for Thermal Energy Storage
The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling

From Energy and Buildings:

Nano-encapsulation of phase change materials: from design to thermal performance, simulations and toxicological assessment
Investigation of phase change materials integrated with fin-tube baseboard convector for space heating

From Journal of Energy Storage:

Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger

From Applied Energy:

Numerical investigation of phase change material thermal storage for space cooling

From Journal of Materials Chemistry A:

Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal-conductivity and good shape-stability

Patent application: Aliphatic materials in heating and cooling applications

Ben Welter - Wednesday, February 06, 2019

U.S. patent application 20190033009 (applicant Elevance Renewable Sciences Inc., Woodridge, Ill.):

"Aliphatic materials and their use in passive heating and cooling applications are generally disclosed. In some embodiments, dibasic acids and esters (diesters) thereof and their use in passive heating and cooling applications are disclosed. In some embodiments, C18 dibasic acids and esters thereof are disclosed, including their use in passive heating and cooling applications. In some embodiments, various olefins, including alkenes and olefinic acids and esters, are disclosed, including their use in passive heating and cooling applications."

http://www.freepatentsonline.com/20190033009.pdf

PureTemp introduces temperature-control fabric coating

Ben Welter - Wednesday, January 23, 2019

PureTemp LLC has developed a fabric coating engineered to provide an effective buffer against ambient temperature swings in consumer products such as apparel, footwear, bedding, safety, medical, workwear and industrial applications.

Scanning electron microscope image of PureTemp fabric coating Through a proprietary process, PureTemp's biobased phase change material is enclosed in spherical microcapsules and bound to the surface of the fabric. PCMs absorb, store and release thermal energy as they cycle between solid and liquid states. The PCM coating interacts continuously with the unique microclimate of the human body, storing and releasing energy to balance body temperature and increase comfort.

PureTemp honeycomb pattern coatings are available for knit, woven, interlock, circular knits, nonwoven, cotton, polyester and other blends. The photo above shows what PureTemp coated fabric looks like under a scanning electron microscope.

The Minnesota company began producing the world’s first 100 percent biobased PCMs in 2007. PureTemp PCMs, developed in three years of research sponsored by the U.S. Department of Agriculture, are used in a wide variety of temperature-control applications, from cooling vests and warming blankets to shipping containers and coffee mugs.

PureTemp's Dan Keller is directing the business initiative. For more information on PureTemp coated fabrics, contact him via inquiries@puretemp.com or visit https://www.puretemp.com/fabrics.

Research roundup: Solar storage tank; concentric PCM module; supercooling degree improvement; more

Ben Welter - Monday, January 21, 2019

From Journal of Thermal Science:

Energy Storage Performance of a PCM in the Solar Storage Tank

From International Journal of Applied Engineering Research:

Numerical assessment of suitability of phase-change materials in a concentric PCM-module for thermal storage applications [pdf]

From International Journal of Energy Research:

Experimental measurements and numerical computation of nanofluid and microencapsulated phase change material in porous material

From IOP Conference Series: Materials Science and Engineering:

Nano-enhanced phase change material effects on the supercooling degree improvement: A review

From Renewable Energy:

Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings

From Journal of Mechanical Engineering and Technology:

Thermal performance analysis of nano enhanced paraffin wax and myristic acid

From Solar Energy:

Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials
Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison

From Solar Energy Materials and Solar Cells:

Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell

From Thermal Science and Engineering Progress:

Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials

From International Journal of Heat and Mass Transfer:

The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change

From Applied Energy:

Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

From AIP Conference Proceedings:

Preparation and characterization of nanoparticle blended polymers for thermal energy storage applications

Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:


From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production: