Phase Change Matters RSS


The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.




Research roundup: Cascaded cold storage unit with multiple PCMs; evolution of global heat transfer coefficient; more

Ben Welter - Tuesday, November 07, 2017

Evolution of global heat transfer coefficient on PCM energy storage cycles [Energy Procedia]

Thermal performance analysis of a cascaded cold storage unit using multiple PCMs [Energy]

An experimental investigation of discharge/solidification cycle of paraffin in novel shell and tube with longitudinal fins based latent heat storage system [Energy Conversion and Management]

An alternative approach for assessing the benefit of phase change materials in solar domestic hot water systems [Solar Energy]

Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization [Solar Energy Materials and Solar Cells]

Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage [Solar Energy Materials and Solar Cells]

Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool [Applied Energy]

Research roundup: Biocatalysts combined to make new PCMs; tankless solar heating system; dual PCM gypsum board; more

Ben Welter - Thursday, November 02, 2017

Combining biocatalysts to achieve new phase change materials. Application to non-edible animal fat [Molecular Catalysis]

Performance evaluation of dual phase change material gypsum board for the reduction of temperature swings in a building prototype in composite climate [Energy and Buildings]

Study on a tankless solar heating system using phase-change material plaster [Building and Environment]

Performance Enhancement of a Building-Integrated Photovoltaic Module Using Phase Change Material [Energy]

Low cracking ratio of paraffin microcapsules shelled by hydroxyl terminated polydimethylsiloxane modified melamine-formaldehyde resin [Colloids and Surfaces A: Physicochemical and Engineering Aspects]

Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building [Energy Conversion and Management]

Comparative study in the identification of liquid to solid transition phase with DSC, Raman spectra analysis and chemiometrics methods applied to phase change materials used for icing-delay in civil engineering infrastructures [Applied Thermal Engineering]

Thickness Determination of a Three-layer Wall with Phase Change Materials in a Chinese Solar Greenhouse [Procedia Engineering]

Experimental Study on Thermal Performance Improvement of Building Envelopes Integrated with Phase Change Materials in an Air-conditioned Room [Procedia Engineering]

Phase Change Humidity Control Material and its Application in Buildings [Procedia Engineering]

Research roundup: Metal corrosion rate assessment; industrial heat storage; erythritol, glycerol and olive oil; more

Ben Welter - Monday, October 30, 2017

A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage [Materials Today]

Step by Step Methodology for the Assessment of Metal Corrosion Rate with PCMs Suitable for Low Temperature Heat Storage Applications [Materials Today]

Investigation of the effect on the efficiency of phase change material placed in solar collector tank [Thermal Science and Engineering Progress]

Generalized diagrams of energy storage efficiency for latent heat thermal storage system in concentrated solar power plant [Applied Thermal Engineering]

Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules [Energy Procedia]

Development of industrial PCM heat storage lab prototype [Energy Procedia]

High Power Latent Heat Storages With 3D Wire Structures – Numerical Evaluation Of Phase Change Behavior [Energy Procedia]

Experimental comparison of two heat exchanger concepts for latent heat storage applications [Energy Procedia]

Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials [Energy Procedia]

Research roundup: TES in Toronto high-rises; rotary desiccant cooling systems; natural convection characterization; more

Ben Welter - Tuesday, October 24, 2017

Experimental investigation of latent thermal energy storage in high-rise residential buildings in Toronto [Energy Procedia]

Study on the Performance of Heat Storage and Heat Release of Water Storage Tank with PCMs [Energy and Buildings]

Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization [Applied Energy]

Integrating photovoltaic thermal collectors and thermal energy storage systems using phase change materials with rotary desiccant cooling systems [Sustainable Cities and Society]

Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material [Solar Energy]

Experimental analysis of solar photovoltaic unit integrated with free cool thermal energy storage system [Solar Energy]

Natural convection characterization during melting of phase change materials: Development of a simplified front tracking method [Solar Energy]

Thermal behavior of latent thermal energy storage unit using two phase change materials: Effects of HTF inlet temperature [Case Studies in Thermal Engineering]

Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material [Electrochimica Acta]

Research roundup: Carbon-based nanoenhanced PCM; copper-powder-sintered frame/paraffin form stable PCM; thermoelectric harvester; more

Ben Welter - Monday, October 23, 2017

From Renewable and Sustainable Energy Reviews:

Experimental set-up for testing active and passive systems for energy savings in buildings – Lessons learnt
Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage

From Journal of Energy Storage:

Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM)

From Applied Thermal Engineering:

A novel heat transfer model of a phase change material using in solar power plant

From Energy Procedia:

Experimental investigation of flow rate impact on thermal accumulation system with PCM

From Energy Conversion and Management:

Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications

From International Journal of Thermal Sciences:

Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials 

From Applied Energy:

Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity
Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications
A novel thermoelectric harvester based on high-performance phase change material for space application

From Sustainable Cities and Society:

Experimental Investigation of Phase Change Materials for Insulation of Residential Buildings
A comparison of battery and phase change coolth storage in a PV cooling system under different climates

PCM briefing: Presentation on effect of carbon-based networks on energy storage materials; webinar on ambient temperature profiles

Ben Welter - Monday, October 02, 2017

Dr. Amy Fleischer• Dr. Amy Fleischer, chairman of the mechanical engineering department at Villanova University, will give a presentation this month on the effect of carbon-based networks on enhanced energy storage materials. The presentation is set for Oct. 20 at Oregon State University in Corvallis. From the abstract: "Many common PCMs have high energy storage capacity but low thermal conductivity so much work has been done to improve their system performance by using nanoscale inclusions intended to increase the effective thermal conductivity. The work presented here shows that in certain situations, not only does the thermal conductivity increase, but also the latent heat. This effect is explored to understand the physical phenomena in order to harness the effect for advanced materials design."

• Registration is open for "Ambient Temperature Profiles," Sonoco ThermoSafe's next webinar on temperature assurance packaging. It will be held on Oct. 10 at 11 a.m. Eastern time. Iftekhar Ahmed, R&D team leader at ThermoSafe, and Bernard McGarvey, senior engineering advisor at Eli Lilly & Co., will lead the session. Participants will learn about "standard ambient profiles, vendor and published profiles and how others even develop their own profiles using empirical temperature data and distribution steps."

• New from Grand View Research: "Thermal Energy Storage Market Analysis By Type, 2014-2025"

• New from QYResearch: "Global Thermal Energy Storage (TES) Market 2017 Share, Size, Forecast 2022"

• Scientists working on the International Energy Agency’s Solar Heating and Cooling Programme Task 53 have compared the cost, efficiency and adaptability of solar cooling storage solutions. The researchers examined both thermal and electricity storage systems and are now creating guidelines for choosing the most fitting solution to heat and cool buildings. But the group will not, according to, issue a recommendation favoring either storage system. “There are too many unknowns. Apart from technical considerations, you need to look at each country’s legislative framework and feed-in tariffs," said Elena-Lavinia Niederhäuser, author of the report and director of the Energy Institute at Fribourg’s College of Engineering and Architecture, Switzerland. 

Homemade a/c unit• When a recent heat wave turned his elementary school into a sauna, a resourceful fourth-grader in Michigan built a home-made air conditioner for his classroom, using a plastic tub, an electric fan and bottles filled the world's cheapest phase change material: water. Abram Barker said he got the idea from YouTube but used a larger base and added towels to insulate the frozen water bottles and soak up condensation.

• Registration is open for "Cone Calorimeter: Quantifying Easily Flammability & Heat Release Rate," an online course offered by The instructor is T. Richard Hull, professor of chemistry and fire science at the University of Central Lancashire. The course will be held at 10 a.m. EST on Oct. 12. The cost is $307 for three participants on a single connection.

• The Phase Change Materials Industry Association, which will hold its inaugural meeting in Boston Oct. 5, has been registered as a corporation in the United States. Its official name: the Phase Change Materials Industry Association of North America Inc. Representatives of more than a dozen companies are scheduled to attend this week's meeting.

Research roundup: Graphene oxide; PV/PCM integration in glazed building; porous plaster board; more

Ben Welter - Friday, September 29, 2017

Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage [Solar Energy Materials and Solar Cells]

PV-PCM integration in glazed building. Co-simulation and genetic optimization study [Building and Environment]

Performance study on different location of double layers SSPCM wallboard in office building [Energy and Buildings]

Facile Preparation of Porous Plaster Board Containing Phase Change Capsules Using Gel Template [Energy and Buildings]

Preparation and properties of capric-stearic acid/White Carbon Black composite for thermal storage in building envelope [Energy and Buildings]

Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production [International Journal of Hydrogen Energy]

Research roundup: Silk hydrogel as packaging material; interfacial polymerization; ecodesign of cladding system with PCM; more

Ben Welter - Wednesday, September 27, 2017

Silk hydrogel illustration

Temperature buffering capacity of silk hydrogel: A useful packaging material [Materials Letters]

Preparation and Characterization of Cross-linked Polyurethane Shell Microencapsulated Phase Change Materials by Interfacial Polymerization [Materials Letters]

Environmental and spatial assessment for the ecodesign of a cladding system with embedded Phase Change Materials [Energy and Buildings]

Novel shapeable phase change material (PCM) composites for thermal energy storage (TES) applications [Solar Energy Materials and Solar Cells]

Novel approaches and recent developments on potential applications of phase change materials in solar energy [Renewable and Sustainable Energy Reviews]

Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials [International Journal of Heat and Mass Transfer]

Natural aging of shape stabilized phase change materials based on paraffin wax [Polymer Testing]

Multiphase transport phenomena in composite phase change materials for thermal energy storage [13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics]

Numerical investigation of cylindrical and spherical encapsulated thermal energy storage system with phase change materials [Transylvania Review]

Temperature Dependence of the Enthalpy of Alkanes and Related Phase Change Materials [Enthalpy and Internal Energy: Liquids, Solutions and Vapours]

Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging [Energy Conversion and Management]

Research roundup: Rubber sealing materials; pork fat as novel PCM; thermal inertia of buildings; more

Ben Welter - Wednesday, September 20, 2017

Feasibility of Using Microencapsulated Phase Change Materials as Filler for Improving Low Temperature Performance of Rubber Sealing Materials [Soft Matter]

Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study [Energy Conversion and Management]

Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics [Journal of Cleaner Production]

Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity [Solar Energy Materials and Solar Cells]

Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement [Solar Energy Materials and Solar Cells]

Solar desalination using solar still enhanced by external solar collector and PCM [Applied Thermal Engineering]

Using Thermal Inertia of Buildings with Phase Change Material for Demand Response [Energy Procedia]

Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage [Energy Procedia]

Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials [International Journal of Heat and Mass Transfer]

PCM briefing: Three molten salt projects projects move forward in U.S., Germany

Ben Welter - Tuesday, September 19, 2017

Terrafore salt encapsulation• The U.S. Department of Energy has released funding to the Argonne National Laboratory for a scaled-up round of independent testing of Terrafore Technologiesencapsulated thermal energy storage in phase change salts. The materials, shown at right, are designed to operate in temperatures to greater than 800° C in a single tank that acts as both storage and heat exchanger.

• The Department of Energy has invited Terrestrial Energy USA to submit the second part of its application for a federal loan guarantee to support the licensing and construction of its Integrated Molten Salt Reactor

DLR has fired up the TESIS thermal storage facility in Cologne, Germany. One hundred tons of molten salt is alternately heated and cooled from 250 to 560 degrees Celsius in the test facility, which is designed to allow industrial-scale testing of temporary storage methods for renewable energy and waste heat. 

• Va-Q-tec AG is reporting a strong increase in its service business in the first half of 2017, up 54 percent to 8.8 million euros. The company, based in Würzburg, Germany, develops, manufactures and sells vacuum insulation panels and phase change materials. 

• New from Zion Market Research: "Global thermal storage market is expected to reach USD 5.7 billion in 2022, growing at a CAGR of 10.7% between 2017 and 2022"

Advanced combat clothing featuring "four-way stretch phase-change material" was on display last week at the annual Defense and Security Equipment International show in London. Royal College of Art researchers and designers collaborated with the Ministry of Defense on the prototypes, which are designed to be easy to run in and comfortable to wear.