Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

PCM mats helped lift Virginia Tech to first place in Solar Decathlon

Ben Welter - Monday, February 18, 2019

FutureHAUS, front elevation

The Virginia Tech team that won first place in the 2018 Solar Decathlon Middle East credits a good share of its success to the deft use of phase change material donated by Insolcorp LLC of New London, N.C.

FutureHAUS, the lone U.S. entry, topped 13 other finalists and more than 60 total entrants in the competition organized by the U.S. Department of Energy and the United Arab Emirates’ Dubai Electricity & Water Authority. Australia's University of Wollongong finished second. The finals took place in November in the desert heat of Dubai.

Insolcorp donated 400 square feet of two types of Infinite R PCM mats. Both are salt hydrates, one with a melt point of 21 degrees Celsius, the other a melt point of 22 degrees C. The phase change material acts as a thermal battery, absorbing and releasing thermal energy as it solidifies and melts.

The Virginia Tech team deployed the mats in the plenum of its 900-square-foot solar-powered house. The PCM allowed the team to take advantage of a rule that limited the use of solar energy to 8kw at any one time, with one exception: Unlimited use of solar energy for air conditioning was allowed during daily inspection periods to assure visitor comfort. The PCM mats, solidified during those periods, helped keep the house comfortable at other times. That helped the FutureHAUS achieve the highest score in net energy use, a key metric in the competition.

Joseph Wheeler, AIA"Every team struggled with the 8kw limit," said Joseph Wheeler, right, lead faculty on FutureHAUS and co-director of Virginia Tech's Center for Design Research. "Typically, during peak energy, you would be generating lots and lots of power, which you could easily charge your batteries with, which you could easily run all your tasks, and you could feed the grid, and build up quite a bit of surplus so that you would remain energy positive throughout the two weeks of competition.

"But, since they limited inverter use at any one time to 8kw, it really put a limit to what our energy budget was. We saw phase change as batteries. A massive ton of batteries. ... It's more of a strategy for a competition than it is for a realized situation. But in a realized situation, we know the value of the PCM. Heat energy, cost of power being cheaper at night than during the day where you can charge your systems and load shift. Practically, PCMs make a lot of sense. And we wanted to have the PCMs in this house for practical reasons, not just for competition reasons. ...

"In simple terms, we eased the demand for the HVAC every afternoon. It was the hottest time of the day and it was also the time when we were getting less power from the solar panels because the sun was moving down. It was a critical time because we knew that once the sun went down, we had to survive on battery. And we had a limit. They limited every house to 15kw of battery."

FutureHAUS, kitchenThe FutureHAUS team finished in the top three in eight of the competition's 10 categories: first place in Architecture, House Functioning and Sustainable Transportation; second place in Sustainability and Innovation; and third place in Engineering/Construction, Energy Efficiency and Comfort Conditions.

The FutureHAUS entry was a two-year university-wide effort. More than 100 Virginia Tech students helped design and build the structure, with help from faculty members in architecture, urban studies, science, engineering and other departments.

The house consists of 18 modular  "cartridges" built inside a Virginia Tech research facility. It was first assembled on campus in Blacksburg, Va., last summer. After testing, it was disassembled, shipped to Dubai and then reassembled at the competition site in just two days. It has since been shipped back to Blacksburg, where it will undergo testing to measure its various energy-saving components.

"We now have a system in place where we can collect data and can truly test the performance," Wheeler said. "We know the PCM worked for us during the competition because we did have some temperature sensors in the ceiling. And so we were able to prove that we were reaching the pre-state when those PCMs were being charged. But we really want to collect a lot more data and look at it in real-world situations."

Research roundup: Thermal conductivity; decarbonization potential of compact heat storage; liquid desiccant cooling systems; more

Ben Welter - Wednesday, February 06, 2019

From Energy:

Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems

From Renewable Energy:

Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe

From Applied Thermal Engineering:

Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK
Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing
A novel composite phase change material with paraffin wax in tailings porous ceramics
Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems
Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating

From Environmental Research:

Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials

From Colloids and Surfaces A:

A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices

From Microporous and Mesoporous Materials:

Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance

From Applied Energy:

Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne

From Building and Environment:

Comparative analysis of the PCM application according to the building type as retrofit system

From Construction and Building Materials:

Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete

From Results in Physics:

Application Research of Nano-storage Materials in Cold Chain Logistics of E-commerce Fresh Agricultural Products

From Journal of Energy Storage:

Using PCM as energy storage material in water tanks: Theoretical and experimental investigation

Research roundup: Micro environmental control system; alkali nitrate salts; sodium thiosulfate pentahydrate; more

Ben Welter - Tuesday, January 22, 2019

From Journal of Thermal Science and Engineering :

Phase Change Material Freezing in an Energy Storage Module for a Micro Environmental Control System
Phase Change Material Melting in an Energy Storage Module for a Micro Environmental Control System

From Renewable Energy:

Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage
Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage

From Applied Energy:

Effect of inclination on the thermal response of composite phase change materials for thermal energy storage

From Solar Energy Materials and Solar Cells:

Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage
Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness

From Energy:

Numerical investigations of optimal phase change material incorporated into ventilated walls

From Polymer Degradation and Stability:

EG-based coatings for flame retardance of shape stabilized phase change materials

From Construction and Building Materials:

Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil

SendDiscard

Patent application: Radiative cooling with solar spectrum reflection

Ben Welter - Tuesday, January 22, 2019

U.S. patent application 20190017758 (applicant Board of Trustees of Stanford University, Stanford, Calif.):

"Aspects of the present disclosure are directed toward radiative cooling with solar spectrum reflection. In certain more specific embodiments, a structure facilitates far-field radiation at particular wavelengths while blocking radiation at solar wavelengths. Additionally, aspects of the present disclosure allow for twenty-four hour cooling of buildings and similar structures, and for cooling through a heat exchange to other liquid, gases, or solids. ... The heat exchange interface may further interface with phase-change materials either directly or indirectly to allow for thermal storage driven by the radiative properties of the plurality of different materials."

http://www.freepatentsonline.com/20190017758.pdf

Research roundup: Solar storage tank; concentric PCM module; supercooling degree improvement; more

Ben Welter - Monday, January 21, 2019

From Journal of Thermal Science:

Energy Storage Performance of a PCM in the Solar Storage Tank

From International Journal of Applied Engineering Research:

Numerical assessment of suitability of phase-change materials in a concentric PCM-module for thermal storage applications [pdf]

From International Journal of Energy Research:

Experimental measurements and numerical computation of nanofluid and microencapsulated phase change material in porous material

From IOP Conference Series: Materials Science and Engineering:

Nano-enhanced phase change material effects on the supercooling degree improvement: A review

From Renewable Energy:

Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings

From Journal of Mechanical Engineering and Technology:

Thermal performance analysis of nano enhanced paraffin wax and myristic acid

From Solar Energy:

Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials
Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison

From Solar Energy Materials and Solar Cells:

Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell

From Thermal Science and Engineering Progress:

Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials

From International Journal of Heat and Mass Transfer:

The improved enthalpy-transforming based lattice Boltzmann model for solid-liquid phase change

From Applied Energy:

Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

From AIP Conference Proceedings:

Preparation and characterization of nanoparticle blended polymers for thermal energy storage applications

Microtek sponsors Spanish entry in Solar Decathlon Europe 2019

Ben Welter - Saturday, January 12, 2019

A team representing the Polytechnic University of Valencia, Spain, plans to use phase change material in the energy-efficient home it is building for Solar Decathlon Europe 2019. Azalea, one of 16 teams selected for the competition, is made up of 30 students and professionals representing fields such as architecture and engineering. 

Microtek Laboratories of Dayton, Ohio, is providing Azalea with technical and financial support.

Tim Riazzi"We are proud to be a sponsor of the Polytechnic team and the Azalea Project," said Tim Riazzi, Microtek president. "As a company who practices and is concerned with environmental stewardship, we are excited about their efforts to create a sustainable ecological dwelling that will reduce our impact on the environment and reduce our energy consumption." 

Riazzi said Microtek provided Azalea with Micronal 28D (formerly Micronal 5528X).

"Instead of providing them with a final product," Riazzi said, "we have worked with the team and decided that it would be better to provide them our dried Micronal product so that they could use it in the specific areas that they needed. We can say that they are incorporating it into a variety of elements/components of their wall and floor design, but they have asked us not to divulge the exact use of it because the competition is active. ... We can say that we have provide them over 200 kg of material."

https://www.microteklabs.com/blog/azalea-project-solar-decathlon-europe

Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:


From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production:

Research roundup: Transparent insulation material wall with PCM; industrial waste heat recovery; cotton-derived carbon sponge; more

Ben Welter - Wednesday, December 26, 2018

From Energy:

Energy performance and economic analysis of a TIM-PCM wall under different climates

From Applied Energy:

A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting
Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage

From Solar Energy:

Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage

From Solar Energy Materials and Solar Cells:

Experimental study on thermal properties and thermal performance of eutectic hydrated salts/expanded perlite form-stable phase change materials for passive solar energy utilization
Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity
Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler
A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties

From Energy and Buildings:

Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM
Optimization of phase change materials (PCMs) to improve energy performance within thermal comfort range in the South Korean climate

From Journal of King Saud University - Science:

Exact and approximate solutions of a phase change problem with the moving phase change material and variable thermal coefficients

From Journal of Molecular Liquids:

Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite

From International Journal of Refrigeration:

Supercooling characteristics of phase change material particles within phase change emulsions
Enhancement of ice formation around vertical finned tubes for cold storage applications

Research roundup: Dynamic building envelope; multilayer glazing facades; spherical capsule with pin-fins; more

Ben Welter - Wednesday, December 05, 2018

From Applied Energy:

Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
Influence of the storage period between charge and discharge in a latent heat thermal energy storage system working under partial load operating conditions
Dynamic building envelope with PCM for cooling purposes – Proof of concept

From Air Force Research Laboratory:

High Energy Advanced Thermal Storage (HEATS) [pdf]

From Solar Energy:

Synthesis and characterization of sensible thermal heat storage mixture containing phosphate compound of cobalt and sodium
Thermal performance of non-ventilated multilayer glazing facades filled with phase change material

From Applied Thermal Engineering:

Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: An experimental investigation
Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage
A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management

From Materials:

Characterization of MgCl2·6H2O-Based Eutectic/Expanded Perlite Composite Phase Change Material with Low Thermal Conductivity

From Solar Energy Materials and Solar Cells:

Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage

From Energy Procedia:

Life Cycle Assessment of thermal energy storage materials and components

From MATEC Web of Conferences:

A Numerical Method for Analysing Heat Conduction in Composites Containing Encapsulated Phase Change Materials [pdf]

From Journal of Building Engineering:

Agenda set for 6th Swiss symposium on thermal energy storage

Ben Welter - Monday, December 03, 2018

The agenda is confirmed for the 6th Swiss Symposium Thermal Energy Storage, to be held in Lucerne, Switzerland, on Jan. 25, 2019. The symposium will focus on seasonal storage systems and the sector coupling of power and heat. Here are the speakers and topics:

• "Heat Storage in Switzerland": Elimar Frank, Frank Energy GmbH, Switzerland

• "Thermal Energy Storage, one Key Element to link Energy Sectors": Peter Schossig, Fraunhofer Institute for Solar Energy Systems ISE, Germany

• "Enhanced Phase-Change Materials for Heat-Storage applications": Colin Pulham, School of Chemistry, University of Edinburgh, United Kingdom

• "High-Temperature Latent Heat Storage and Applications": Dan Bauer, German Aerospace Center (DLR), Stuttgart, Germany

• "High-Temperature Phase Change Materials": Yulong Ding, University of Birmingham, United Kingdom

• "Network Convergence and Sector Coupling at St. Galler Stadtwerke": Simon Schoch, St. Galler Stadtwerke, Switzerland

• "Heat4Cool – Multienergy Solutions for Heating & Cooling": Marcello Aprile, Politecnico di Milano and Philipp Schütz, Lucerne School of Engineering and Architecture, Switzerland

• "Large-Scale Thermal Energy Storage and Multi-Energy Networks in Vienna": Robert Hammerling, Wien Energie GmbH, Austria

• "Current and Future Use of Seasonal Thermal Storage in Ground Heat Exchangers": A Swedish Perspective: José Acuña, KTH Royal Institute of Technology, Sweden

• "Avoided System Cost for Grid Reinforcement and Peaker Plants by using Ecovat Seasonal Thermal Energy Storage": Aris de Groot, Ecovat Renewable Energy Technologies, Netherlands

• "Optimization of Seasonal Thermal Energy Storage Systems for Buildings": Willy Villasmil, Lucerne School of Engineering and Architecture, Switzerland

• "Seasonal Hot Water Storage with Vacuum Super Insulation": Matthias Demharter, Bayerisches Zentrum für Angewandte Energieforschung ZAE, Germany

The registration fee is 300 Swiss francs. Lunch is included. The 2018 symposium drew more than 100 participants.

https://www.hslu.ch/en/lucerne-school-of-engineering-architecture/campus/veranstaltungen/2019/01/25/cctes-sstes19