Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Corn oil PCM in frozen food cooling machine; portable solar box cooker; expanded graphite/1-octadecanol composite; more

Ben Welter - Saturday, March 21, 2020

From Journal of Physics:

Corn oil phase change material (PCM) in frozen food cooling machine to improve energy efficiency

From Materials Today: Proceedings:

Investigating thermal properties of Nanoparticle Dispersed Paraffin (NDP) as phase change material for thermal energy storage

From Energy:

Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process

From Solar Energy:

Design, realization, and tests of a portable solar box cooker coupled with an erythritol-based PCM thermal energy storage
Diversiform microstructure silicon carbides stabilized stearic acid as composite phase change materials

From International Journal of Thermofluids:

Investigating the performance of a thermal energy storage unit with paraffin as phase change material, targeting buildings’ cooling needs: an experimental approach

From Journal of Cleaner Production:

Energy and exergy analysis of wind farm integrated with compressed air energy storage using multi-stage phase change material

From Powder Technology:

Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage

From Journal of Energy Storage:

A multi-objective optimal design method for thermal energy storage systems with PCM: A case study for outdoor swimming pool heating application
Reducing PV module temperature with radiation based PV module incorporating composite phase change material
Numerical investigation on the effect of fin design on the melting of phase change material in a horizontal shell and tube thermal energy storage

From Journal of Thermal Analysis and Calorimetry:

Characterization of form-stable phase-change material for solar photovoltaic cooling

From International Journal of Thermophysics:

Thermophysical Properties of a Novel Nanoencapsulated Phase Change Material

From International Journal of Heat and Mass Transfer:

Lattice Boltzmann simulation of forced convection melting of a composite phase change material with heat dissipation through an open-ended channel
High power density thermal energy storage using additively manufactured heat exchangers and phase change material

From Energies:

Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank [pdf]
Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials [pdf]

From Energy & Fuels:

Novel shape-stabilized phase change materials based on paraffin/EPDM@graphene with high thermal conductivity and low leakage rate

From Polymers and Polymer Composites:

Regulating phase-change temperatures of form-stable phase-change ternary composite fibrous membranes consisting of polystyrene nanofibers and fatty acid eutectics via co-electrospinning method

From Applied Energy:

A design protocol for enhanced discharge exergy in phase change material heat battery
Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications
A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix

From Journal of Building Engineering:

Preparation and characterization of metal-organic framework /microencapsulated phase change material composites for indoor hygrothermal control

From Indoor and Built Environment:

Numerical and experimental investigation on dynamic thermal performance of floor heating system with phase change material for thermal storage

From Applied Clay Science:

A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage

From Chemical Engineering Journal:

Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials

From Construction and Building Materials:

Phase change materials for pavement applications: A review

From Carbohydrate Polymers:

Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in “smart” windows

Cubesat propulsion concept wins $225,000 National Science Foundation grant

Ben Welter - Friday, February 14, 2020

A Cubesat propulsion system that uses phase change material to store solar thermal energy for use when needed has been awarded a $225,000 National Science Foundation SBIR grant. The ThermaSat concept, developed by Howe Industries of Tempe, Ariz., is designed to provide propulsion for a typical 15kg cubcubesat for 10 years.

Cubesats are tiny satellites — weighing as little as 200 grams — that orbit close to Earth’s atmosphere. They are cheaper to develop and launch than larger satellites. Cubesats have a wide range of purposes, including the collection of mapping and weather data. More than 1,100 have been successfully deployed.

Troy Howe, owner of Howe Industries, answered questions about the ThermaSat propulsion system.

Q: How long has your company been working on the concept?

A: "We have been working on this topic for only about a year in preparation for our NSF proposal, but have experience with optical systems and phase change materials going back about five years."

Q: Can you briefly describe how the system works?

A: "The ThermaSat works by heating liquid water propellant to high temperature steam using incident sunlight. Normally, it is difficult to reach high enough temperatures to use water as propellant, but our optical filtration system is designed to reject long wavelengths of light and only transmit short wavelengths- similar to the greenhouse effect. The phase change materials in the thermal capacitor store the solar energy over a period of hours and then heat the propellant during a 'burn' phase.

ThermaSat cutaway drawing"The PCM will be distributed throughout a graphite matrix in the form of small beads. Flow channels will run axially down the length of the cylinder for the propellant to pass through. The design is based loosely on the old NERVA fuel elements from the nuclear rocket program in the 1970s, with the UC kernels being replaced with our PCM. The drawing here shows a cutaway of the thermal capacitor surrounded by the optical system.

"The system is very conceptual at this point and has not been tested, although the propulsion characteristics are well understood. Our task at this point is to show that the optical system works as predicted and can reach the desired temperatures. Phase II will address the effects of a vacuum environment on a prototype."

Q: What type of PCM is used?

A: "We chose a salt (80LiOH+20LiF) as our PCM, it melts at 700K and has a latent heat of fusion of 1163 J/g. The material was selected based on a study performed by NASA in 1986 on space energy storage. The paper was called 'Technology for Brayton-Cycle Space Powerplants Using Solar and Nuclear Energy' by Robert English.""

Q: How much PCM would be used in a system powering a typical Cubesat?

A: "The standard design includes 0.62 kg of PCM. "

Q: Are you working with any Cubesat manufacturers at this point?

A: "We received letters of interest from Pumpkin Space Systems, Aster Labs, and Arizona State University. They all expressed interest in having a safe and reliable Cubesat propulsion system but we have not formally formed collaboration with any manufacturers at this point.”

Q: How will you use the NSF SBIR grant?

A: "Our goals for this topic include demonstrating the optical system in a lab bench test, fabricating photonic crystals, and performing computational analysis on the thermal, structural, and propulsion systems."

Q: What's the next major step in commercializing the system?

A: "Our commercialization strategy right now is to build a functioning prototype and demonstrate operation on earth. From that point we will aim to do a flight test which performs a set of orbital maneuvers and successfully de-orbits itself. From there we will work with Cubesat manufacturers to move forward."

Q: What excites you most about this project?

A: "We are excited about how near term and effective this technology will be for the upcoming Cubesat revolution. We hope to provide a safe, reliable, and effective propulsion solution that can be used with thousands of different satellites and drastically increase the performance of new technologies in space in the timeframe of just a few years.”

Research roundup: Carbonized waste tires; cetyl palmitate/nickel foam; hydrated salt corrosion assessment; more

Ben Welter - Tuesday, January 14, 2020

From Waste Management:

Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage

From Journal of Energy Storage:

Development of polyurethane foam incorporating phase change material for thermal energy storage
Facile synthesis and thermal performance of cetyl palmitate/nickel foam composite phase change materials for thermal energy storage
Optimal sizing design and operation of electrical and thermal energy storage systems in smart buildings

From Energy Conversion and Management:

Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems
Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study

From Applied Energy:

Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage

From Renewable Energy:

Corrosion assessment of promising hydrated salts as sorption materials for thermal energy storage systems
Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application
Selection of a phase change material and its thickness for application in walls of buildings for solar-assisted steam curing of precast concrete
Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings

From Applied Thermal Engineering:

Analysis of energy retrofit system using latent heat storage materials applied to residential buildings considering climate impacts
Experimental and numerical simulation of phase change process for paraffin/expanded graphite/ethylene-vinyl acetate ternary composite
An experimental investigation on the evaporation of polystyrene encapsulated phase change composite material based nanofluids

From Solar Energy Materials and Solar Cells:

Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity

From Energies:

The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System

From Journal of Materials Science:

Graphene aerogel-based phase changing composites for thermal energy storage systems

From Journal of Mechanical Science and Technology:

A study on development of the thermal storage type plate heat exchanger including PCM layer

From Journal of Power Sources:

Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge

From Scientific Reports:

Modification of asphalt mixtures for cold regions using microencapsulated phase change materials

From ASES National Solar Conference:

A Study on the Thermal Energy Storage System Using Multiple PCMs [pdf]

From Molecules:

Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods

From Energy and Buildings:

Experimental study on thermal performance of a mobilized thermal energy storage system: A case study of hydrated salt latent heat storage

From Chemical Engineering Journal:

Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management

From International Journal of Heat and Mass Transfer:

A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection

PCM briefing: Advanced Building Skins presentations are online; Ecozen raises $6 million

Ben Welter - Monday, December 16, 2019

• Presentations given at the 14th Conference on Advanced Building Skins in Switzerland in October are available via download for 80 euros. Among the topics: "Thermal performance of engineered wood flooring impregnated with phase-change materials," Damien Mathis, University LAVAL, Fontenay-sous-Bois, France; "Thermal comfort modelling and its impact on building energy performance," Vikram Sami, Olson Kundig, Seattle, Wash.; and "Integrated solar electric/thermal cooling system with storage," Mohannad Bayoumi, King Abdulaziz University, Jeddah, Saudi Arabia.

Loughborough University researchers have been awarded funding to help with the design and development of a four-wheeled electric vehicle for research, teaching and outreach in India. Engineers at Vellore Institute of Technology and PSG College of Technology, both located in Tamil Nadu, will work with Loughborough researchers to explore the use of phase change material and other technologies to manage battery heat. The high ambient temperatures in south India and similar climates can significantly reduce battery life in electric vehicles.  

• Energy storage specialist 1414 Degrees has announced plans to acquire SolarReserve Australia II, which owns the Aurora Solar Energy Project in South Australia and two solar sites in New South Wales. The Adelaide, Australia, company plans to use the Aurora site to build a 400 MW solar farm with thermal storage capacity of several thousand megawatt hours. The technology stores electricity as thermal energy by heating and melting containers full of silicon.

• Agritech startup Ecozen of Pune, India, which makes portable solar cold rooms for use on small farms, has raised a total of $6 million to fuel its growth phase. The cold rooms feature a PCM-equipped thermal storage unit that can store power for more than 36 hours in case of cloudy or rainy weather.  

Advanced Cooling Technologies Inc. of Lancaster, Penn., is seeking qualified research and development engineers at various experience and education levels to work on space, defense and energy-related applications. 

• Andreas Hauer, head of the energy storage department at ZAE Bayern (the Bavarian Center for Applied Energy Research) has joined the board of directors at the International Solar Energy Society.

Research roundup: Passive cooling in buildings; honeycomb carbon fibers; leak-free aggregates; more

Ben Welter - Monday, October 14, 2019

From Applied Energy:

Passive cooling through phase change materials in buildings. A critical study of implementation alternatives

From Applied Thermal Engineering:

Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage

From e-Polymers:

Fabrication and characterization of conductive microcapsule containing phase change material

From Construction and Building Materials:

Preparation and characterization of nano-SiO2/paraffin/PE wax composite shell microcapsules containing TDI for self-healing of cementitious materials
Development of leak-free phase change material aggregates
Behavior of cementitious mortars with direct incorporation of non-encapsulated phase change material after severe temperature exposure

From Advanced Functional Materials:

Engineering the Thermal Conductivity of Functional Phase‐Change Materials for Heat Energy Conversion, Storage, and Utilization

From Journal of Energy Storage:

A numerical investigation of the effects of metal foam characteristics and heating/cooling conditions on the phase change kinetic of phase change materials embedded in metal foam
Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review
Innovative composite sorbent for thermal energy storage based on a SrBr2·6H2O filled silicone composite foam

From ACS Applied Nano Materials:

Concentrated Ag Nanoparticles in Dodecane as Phase Change Materials for Thermal Energy Storage

From Materials Research Express:

Preparation of 1-dodecanol microcapsules with cellulose nanofibers-modified melamine-formaldehyde resin as a potential phase change material

From IOP Conference Series: Earth and Environmental Science:

Optimisation of Parameters in Thermal Energy Storage System by Enhancing Heat Transfer in Phase Change Material

From International Journal of Heat and Mass Transfer:

Thermal transport properties at interface of fatty acid esters enhanced with carbon-based nanoadditives

From Journal of Solar Energy Engineering:

Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling

From Solar Energy:

Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage

From RSC Advances:

A novel forced separation method for the preparation of paraffin with excellent phase changes

From Energy Conversion and Management:

Experimental characterisation of a novel thermal energy storage based on open-cell copper foams immersed in organic phase change material

Research roundup: Mesoporous silica; nanoencapsulation of oleic acid PCM; flexible crosslinking; more

Ben Welter - Friday, September 20, 2019

From International Journal of Energy Research:

Facile functionalized mesoporous silica using biomimetic method as new matrix for preparation of shape‐stabilized phase‐change material with improved enthalpy
Binary mixtures of fatty alcohols and fatty acid esters as novel solid‐liquid phase change materials

From Journal of Applied Polymer Science:

Phase change material with flexible crosslinking for thermal energy storage

From Journal of Thermal Analysis and Calorimetry:

Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage

From Renewable Energy:

Enhanced properties of diatomite-based composite phase change materials for thermal energy storage

From Energy:

Perspectives for short-term thermal energy storage using salt hydrates for building heating
Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement
Numerical investigations on performance of phase change material Trombe wall in building

From Energy and Buildings:

Potential of energy flexible buildings: evaluation of DSM strategies using building thermal mass
Numerical analysis in a full-scale thermal energy storage tank with dual PCM capsules

From Applied Thermal Engineering:

Experimental determination and fractal modeling of the effective thermal conductivity of autoclave aerated concrete (AAC) impregnated with paraffin for improved thermal storage performance
Preparation and characterization of new nano-particle mixed as thermal storage material
Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling

From Chemical Engineering Journal:

Fatty Amines/Graphene Sponge Form-Stable Phase Change Material Composites with Exceptionally High Loading Rates and Energy Density for Thermal Energy Storage

From MATEC Web of Conferences:

Thermal conductivity of aerated concrete (AC) composites containing micro-encapsulated phase change materials [pdf]
Overheating mitigation in buildings: a computational exploration of the potential of phase change materials [pdf]

From Solar Energy:

Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite phase change materials for thermal energy storage

From Solar Energy Materials and Solar Cells:

Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power
A strategy for designing microencapsulated composite phase change thermal storage materials with tunable melting temperature

From Institute of Electronics and Information Engineers 2019 Summer Conference:

Thermal Management System in Electric vehicle Battery Pack Using Phase Change Material

From Materials Chemistry and Physics:

Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage

From Sustainable Cities and Society:

Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures

From Thermochimica Acta:

The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM

From International Journal of Heat and Mass Transfer:

Functionalized mesoporous silica as matrix for shape-stabilized phase change materials

From Applied Energy:

Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials

From Energy Conversion and Management:

Prototype latent heat storage system with aluminum-silicon as a phase change material and a Stirling engine for electricity generation

From Journal of Solar Energy Engineering:

Experimental Investigation and Numerical Modeling of Room Temperature Control in Buildings by the Implementation of Phase Change Material in the Roof
Suitability Assessment and Experimental Characterization of Phase Change Materials for Energy Conservation in Indian Buildings

Research roundup: Corrosion effect of Micronal PCMs; photovoltaic-thermal system optimization; diatomite-based composite; more

Ben Welter - Monday, September 09, 2019

From Renewable Energy and Sustainable Buildings:

Study of Corrosion Effect of Micronal® Phase Change Materials (PCM) with Different Metal Samples
Use of Phase Change Materials for Solar Systems Applications
Performance Optimization of Concentrated Photovoltaic-Thermal (CPV-T) System Employing Phase Change Material (PCM) in Hot Climate

From Asia International Symposium on Mechatronics:

Investigation for a Phase Change Immersion Cooling System

From Energy Conversion and Management:

Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement

From Renewable Energy:

Enhanced properties of diatomite-based composite phase change materials for thermal energy storage
Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems

From Journal of Applied Polymer Science:

Surface modification of MWCNT and its influence on properties of paraffin/MWCNT nanocomposites as phase change material

From Energy and Buildings:

Energy and emissions analysis of ice thermal energy storage in the western US
Thermal energy storage characterization of cementitious composites made with Recycled Brick Aggregates containing PCM

From Solar Energy:

Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands

From Construction and Building Materials:

Development of structural thermal energy storage concrete using paraffin intruded lightweight aggregate with nano-refined modified encapsulation paste layer

From Applied Energy:

A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials

From International Journal of Energy Research:

Preparation and characterization of nano‐enhanced myristic acid using metal oxide nanoparticles for thermal energy storage
Performance comparison of different combined heat and compressed air energy storage systems integrated with organic Rankine cycle

From xPRESS Polymer Letters:

Editorial corner – a personal view / Thermal management with polymer composites

From International Symposium on Asphalt Pavement & Environment:

Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures

From Journal of Sol-Gel Science and Technology:

Development of new inorganic shape stabilized phase change materials with LiNO3 and LiCl salts by sol-gel method

From Advanced Functional Materials:

Functional Soft Composites As Thermal Protecting Substrates for Wearable Electronics

Research roundup: Microencapsulated coconut oil; mixed alkanes microcapsules; low-hydration heat cement slurry; more

Ben Welter - Tuesday, August 27, 2019

From Cellulose:

Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics

From Journal of Physics: Conference Series:

Numerical and experimental investigation of melting process in spherical PCM capsule used for low-temperature thermal energy storage systems

From Energy:

Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage
Preparation of Low Hydration Heat Cement Slurry with Micro-encapsulated Thermal Control Material

From Applied Thermal Engineering:

A Three-Dimensional Numerical Investigation of a Novel Shallow Bore Ground Heat Exchanger Integrated with Phase Change Material

From Polymer Science:

Preparation of Phase Change Microcapsules with Inorganic/Polymer Hybrid Shell Through a “Two-Step” Reaction

From Solar Energy:

Improved thermal energy storage for nearly zero energy buildings with PCM integration

From Thermal Science and Engineering Progress:

A theoretical and experimental study of a TBAB salt hydrate based cold thermal energy storage in an air conditioning system

From Journal of Energy Storage:

A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells

From Energy Conversion and Management:

Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system

From Renewable and Sustainable Energy Reviews:

Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power

Research roundup: Microencapsulated sugarcane wax; night ventilation; caprylic acid composite; more

Ben Welter - Friday, August 23, 2019

From Chemical Engineering:

Thermal properties and behavior of microencapsulated sugarcane wax phase change material

From Renewable Energy:

Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)
Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China

From Applied Energy:

Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance

From Materials Research Express:

Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage

From Energy Conversion and Management:

Thermodynamic assessment of an integrated renewable energy multigeneration system including ammonia as hydrogen carrier and phase change material energy storage

From Russian Journal of General Chemistry:

Symmetrical Fatty Dialkyl Carbonates as Potential Green Phase Change Materials: Synthesis and Characterisation

From Journal of Physics: Conference Series:

An Integrated Energy Power Generation with Energy Storage System

From Safety in Extreme Environments:

Review of energy storage technologies in harsh environment

From Materials Today: Proceedings:

Review on performance assessment of phase change materials in buildings for thermal management through passive approach

From International Journal of Environmental Science and Technology:

Sunlight-driven organic phase change material-embedded nanofiller for latent heat solar energy storage

From International Journal of Energy Research:

Application of a ground source heat pump system with PCM‐embedded radiant wall heating for buildings

From Industrial & Engineering Chemistry Research:

Theoretical Evaluation of an Organic Phase Change Material (PCM)-Inserted Dual-Functional Adsorbent for the Recovery of Heat of Adsorption

From Chemical Engineering Journal:

Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage

From Solar Energy:

Numerical study on charging characteristics of heat pipe-assisted cylindrical capsule for enhancing latent thermal energy storage

From Renewable Energy and Environmental Sustainability:

Use of phase change materials in concrete: current challenges

From Solar Energy Materials and Solar Cells:

Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials

From Applied Thermal Engineering:

Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate–urea/fumed silica for radiant floor heating system

From Sustainable Cities and Societies:

Cardinal orientation and melting temperature effects for PCM-enhanced light-walls in different climates

From Journal of Thermal Analysis and Calorimetry:

Phase change materials (PCMs) for improving solar still productivity: a review

Patent application: Eco smart panels for energy savings

Ben Welter - Thursday, August 15, 2019

U.S. patent application 20190249904 (applicant SIDCO Homes Inc., San Jose, Calif.):

"An eco-smart panel is described comprising a a solar thermal panel, a phase change material, a metal foil layer, and a structural frame constructed of materials including wood studs, gypsum, or fiberglass-reinforced concrete. The materials may be variously configured to create modular systems for fabricating buildings or structures. Eco-smart panels may be utilized to create buildings or structure with enhanced energy efficiency, increased fire resistance, increased flood resistance, and decreased construction cost and time."

http://www.freepatentsonline.com/20190249904.pdf