Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

Two Entropy advisors, Dr. Mohammed Farid and Lucas B. Hyman, are pleased to take your questions about PCMs and thermal energy storage. Send your questions to bwelter@puretemp.com. We'll select the best and post the answers here each week.

RECENT POSTS

TAGS

ARCHIVE

German researchers roll out PCM warming mats for greenhouse plants

Ben Welter - Tuesday, September 19, 2017

Researchers at the University of Zwickau's Institute for Textile and Leather Technologies are developing a latent heat storage mat that uses phase change material to increase plant root temperatures in cold seasons. 

Dr. Silke HessburgThe passive system, designed for use in greenhouses, requires no additional energy supply. Dr. Silke Hessberg, who is directing the research, says root climate control promotes plant growth efficiently.

"There are already various heating systems on the market, such as underfloor heating systems, hot water systems or electric and gas heaters," she says. "These are always cost-intensive heating systems, since energy must be actively supplied."

The Thuringian Institute of Textile and Plastics Research (TITK) is supporting the two-year project. TITK's Martin Geissenhöner identifies the PCM as paraffin. 

"We have different melting points. For the root project we use melting points between 5 and 42° C, specially 17° C," he says. "The PCM is encapsulated in a network polymer. It's like a sponge structure."

Research associate Nancy Schrader says the mats are placed on the soil surface. Work on the project began in May 2015 and is expected to conclude in December. 

Research roundup: Flexible PCMs with high thermal conductivity; treatment for exercise-induced muscle damage; more

Ben Welter - Thursday, August 31, 2017

Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage [Energy Conversion and Management]

The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study [Journal of Sports Sciences]

Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide [Renewable Energy]

Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials [Chinese Journal of Materials Research]

Research roundup: Carbonized rice; erythritol-xylitol; integrated double skin façade; paraffin-based TES system; more

Ben Welter - Wednesday, August 30, 2017

Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: preparation, characterization, and thermal conductivity enhancement [Energy and Buildings]

Mitigation against Crude Oil Wax Solidification using TES Fin [Chemical Engineering Research and Design]

Heat transfer analysis of an integrated double skin façade and phase change material blind system [Building and Environment]

Experimental Phase Diagram Study of the Binary Polyols System Erythritol-Xylitol [Solar Energy Materials and Solar Cells]

Study of Various Aspects of Phase Change Material During Solidification and Melting: A Review [pdf] [International Journal of Scientific Research in Science and Technology]

Development in Paraffin Based Thermal Storage System Through Shell and Tubes Heat Exchanger With Vertical Fins [ASME 2017 11th International Conference on Energy Sustainability]

Europe holds PCM market lead, but North America is gaining

Ben Welter - Monday, August 28, 2017

In terms of value, Europe held the largest share of the global PCM market last year, according to the research firm MarketsandMarkets. An executive summary of the research firm's June report, "Advanced PCM Market: Global Forecast to 2022," estimates Europe's share at 49.7 percent.

"The trend towards energy efficiency in the region, accompanied by the growing demand for green buildings, fuels the growth of the advanced PCM market in the region," the summary says. "In addition, the presence of mandatory building energy codes and the increasing demand for housing in Germany and the U.K. drive the demand for advanced PCM in the region."

But MarketsandMarkets projects that North America will be the fastest-growing market for advanced PCMs between 2017 and 2022, with a compound annual growth rate of nearly 21 percent. Analyst Sushmita Singh cites "stringent building energy codes," growth in the housing sector and rising demand for green buildings as key factors.

This MarketsandMarkets graphic shows 2016 market shares in terms of value and compound annual growth rates (CAGR) between 2017 and 2022:

Research roundup: HDPE spheres; erythritol-based composites; shape-stabilized PCM sheets; graphite foam; more

Ben Welter - Wednesday, August 23, 2017

High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study [Journal of Energy Storage]

Numerical Simulation and Optimization of the Melting Process of Phase Change Material inside Horizontal Annulus [Energies]

Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes [Applied Energy]

Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics [Applied Energy]

Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage [Applied Energy]

Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate [Building and Environment]

Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage [Solar Energy Materials and Solar Cells]

Alkali polyphosphates as new potential materials for thermal energy storage [Solar Energy]

Magnesium phosphate cements formulated with low grade magnesium oxide incorporating phase change materials for thermal energy storage [Construction and Building Materials]

Numerical and experimental investigation of an insulation layer with phase change materials (PCMs) [Energy and Buildings]

Research roundup: Geopolymer concrete; octyl, decyl, dodecyl and tetradecyl stearates; supercooling suppression of erythritol; more

Ben Welter - Thursday, August 03, 2017

From Cement and Concrete Research:

Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials

From Applied Energy:

Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage

From International Journal of Refrigeration:

Parametric analysis of domestic refrigerators using PCM heat exchanger

From American Institute of Physics:

Utilization of the PCM Latent Heat for Energy Savings in Buildings [pdf]

From Journal of Cleaner Production:

LCA perspective to assess the environmental impact of a novel PCM-based cold storage unit for the civil air conditioning

From Renewable Energy:

A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation
Ionic compounds derived from crude glycerol: Thermal energy storage capability evaluation
Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems

From Materials Today: Proceedings:

Viscoelastic characterization of multifunctional composites incorporated with microencapsulated phase change materials

From Applied Thermal Engineering:

Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure
A numerical study of building integrated with CaCl2·6H2O/expanded graphite composite phase change material
Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter

From Applied Polymer Science:

Emulsion-electrospinning n-octadecane/silk composite fiber as environmental-friendly form-stable phase change materials

From Journal of Materials Chemistry A:

Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies

From Materials:

Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste
Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger

From Energy and Buildings:

Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials
Preparation and thermal properties of octyl, decyl, dodecyl and tetradecyl stearates as phase change materials for thermal energy storage
Effect of PCM application inside an evacuated tube collector on the thermal performance of a domestic hot water system

From Solar Energy:

Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM)
Heat transfer studies of building brick containing phase change materials
Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage

From Solar Energy Materials and Solar Cells:

Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage
MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity

Research roundup: Macro-packed fatty acid ester composites; selective laser sintering; more

Ben Welter - Tuesday, July 11, 2017

From Journal of Industrial and Engineering Chemistry:

Performance evaluation of macro-packed fatty acid ester composites using energy-efficient thermal storage systems

From Procedia Manufacturing:

Selective Laser Sintering of Phase Change Materials for Thermal Energy Storage Applications

From Applied Energy:

Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage
Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review

From Solar Energy Materials and Solar Cells:

A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam
Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material

From Renewable Energy:

Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery

From Lehigh University:

Numerical and Experimental Study of the Melting Process of a Phase Change Material in a Partically Filled Spherical Shell [thesis]

From IEEE Internet Computing:

Thermal Time Shifting: Decreasing Datacenter Cooling Costs with Phase Change Materials

From International Journal of Heat and Mass Transfer:

Numerical modeling of solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection

From Applied Thermal Engineering:

Evaluation of the suitability of different calorimetric methods to determine the enthalpy-temperature curve of granular PCM composites
Heat Transfer Enhancement during Freezing Process of Nano Phase Change Material (NPCM) In a Spherical Capsule
Numerical simulation on thermal characteristics of supercooled salt hydrate PCM for energy storage: Multiphase model

Research roundup: INPATH-TES Ph.D. program; waste-to-energy plants; EnergyPlus-based building model; more

Ben Welter - Thursday, June 29, 2017

INPATH-TES: Innovative pathways to PhD research in thermal energy storage [Sustainable and Renewable Energy Engineering]

Application of high temperature phase change materials for improved efficiency in waste-to-energy plants [Waste Management]

Experimental investigation and EnergyPlus-based model prediction of thermal behavior of building containing phase change material [Journal of Building Engineering]

Experimental Analysis of Graphite Dispersed Salt Hydrates based Phase Change Materials to Determine Enhancement in their Thermophysical Properties [pdf] [Journal of Chemical and Pharmaceutical Sciences]

Use of phase change materials during compressed air expansion for isothermal CAES plants [35th UIT Heat Transfer Conference]

Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent) [pdf] [International Research Journal of Engineering and Technology]

Cellulose/Paraffin Composite Fibers for Thermal Energy Storage and Temperature Regulation [IUMRS International Conference in Asia]

Enhanced Specific Heat Capacity of Binary Chloride Salt by Dissolving Magnesium for High-temperature Thermal Energy Storage and Transfer [Journal of Materials Chemistry A]

Research roundup: Graphite particle fillers; sodium nitrate microcapsules; domestic space heating in UK; more

Ben Welter - Tuesday, June 27, 2017

Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane [International Journal of Heat and Mass Transfer]

Thermal stability of sodium nitrate microcapsules for high-temperature thermal energy storage [Solar Energy Materials and Solar Cells]

Phase change materials to meet domestic space heating demand in the UK - A numerical study [Journal of Fluid Flow, Heat and Mass Transfer]

Synthesis of three-dimensional graphene aerogel encapsulating n-octadecane for enhancing phase-change behavior and thermal conductivity [Journal of Materials Chemistry A]

A recyclable thermochromic elastic phase change oleogel for cold compress therapy [Applied Thermal Engineering]

Research roundup: PCM-assisted night purge ventilation; dispersed metallic nanoparticles; crystallohydrates; more

Ben Welter - Tuesday, June 20, 2017

Nanoencapsulated crystallohydrate mixtures for advanced thermal energy storage [Journal of Materials Chemistry A]

Hexadecane-in-water emulsions as thermal-energy storage and heat transfer fluids: Connections between phase-transition temperature and period of hexadecane droplets dispersed in hexadecane-in-water emulsions and characteristics of surfactants [Colloids and Surfaces A: Physicochemical and Engineering Aspects]

Evaluating the Performance of American Change Phase Paraffin Cooling Vest and Iranian Spadana Gel Ice Cooling Vest on the Perceptual and Physiological Strain Score Index in Hot and Humid Working Conditions of Assaluyeh in Iran [International Journal of Occupational Hygiene]

Development of thermal enhanced n-octadecane/porous nano carbon-based materials using 3-step filtered vacuum impregnation method [Thermochimica Acta]

The impact of phase change materials assisted night purge ventilation on the indoor thermal conditions of office buildings in hot-arid climates [Energy and Buildings]

Thermal energy harvest in the discharge of CO2 semi-clathrate hydrate in an emulated cold storage system [Applied Thermal Engineering]

Melting dynamics of a phase change material (PCM) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models [Applied Thermal Engineering]

Comparative assessment of thermal comfort with insulation and phase change materials utilizations in building roofs and walls [pdf] [Advanced Materials Proceedings]

Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material [Composites Science and Technology]