Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Poly (methyl methacrylate) shell; calcium carbonate shell; macroscopic composite cement mortars; more

Ben Welter - Tuesday, March 19, 2019

From Energy Procedia:

Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage
Supercooling study of erythritol/EG composite phase change materials
Thermal performance of pouch Lithium-ion battery module cooled by phase change materials
Active cooling based battery thermal management using composite phase change materials
Investigation on Thermal Performance of an Integrated Phase Change Material Blind System for Double Skin Facade Buildings
Experimental study on preparation of a novel foamed cement with paraffin/ expanded graphite composite phase change thermal energy storage material

From Colloids and Surfaces A: Physicochemical and Engineering Aspects:

Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage

From Journal of Materials Chemistry A:

A novel shape-stabilization strategy for phase change thermal energy storage

From Journal of Molecular Liquids:

Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects

From Energy and Buildings:

Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: lab-scale characterization

From Applied Sciences:

Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material

From Solar Energy:

Modelling and performance analysis of a new concept of integral collector storage (ICS) with phase change material

Research roundup: Personal cooling system; optimization of active wall system; cement mortar; asphalt pavement; more

Ben Welter - Friday, March 15, 2019

From International Journal of Refrigeration:

Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling

JMR illustration of microencapsulated n-octadecane with silk From Journal of Materials Research:

Fabrication and characterization of microencapsulated n-octadecane with silk fibroin–silver nanoparticles shell for thermal regulation

From IOP Conference Series: Earth and Environmental Sciences:

Simple Thermal Energy Storage Tank for Improving the Energy Efficiency of an Existing Air-conditioning System
An optimization study into thermally activated wall system with latent heat thermal energy storage
Simulation of operation performance of a solar assisted ground heat pump system with phase change thermal storage for heating in a rural building in Xi'an
Experimental Study on the Demand Shifting Effects of PCM Integrated Air-Conditioning Duct

From International Journal of Energy Research:

Efficiency optimisation of the thermal energy storage unit in the form of the ceiling panel for summer conditions

From Materials Research Express:

Experimental study on thermal conductivity of composite phase change material of fatty acid and paraffin

From Energies:

Design Optimization of a Hybrid Steam-PCM Thermal Energy Storage for Industrial Applications

From Construction and Building Materials:

Analysis of thermoregulation indices on microencapsulated phase change materials for asphalt pavement

From Applied Thermal Engineering:

Experimental and numerical characterization of an impure phase change material using a thermal lattice Boltzmann method

From Energy Conversion and Management:

Experimental and numerical study of a vertical earth-to-air heat exchanger system integrated with annular phase change material

From Materials:

Thermal and Structural Characterization of Geopolymer-Coated Polyurethane Foam—Phase Change Material Capsules/Geopolymer Concrete Composites

From Applied Sciences:

Microstructure and Mechanical Properties of Cement Mortar Containing Phase Change Materials

Patent application: Dimensionally stable phase change material

Ben Welter - Friday, March 15, 2019

U.S. patent application 20190078006 (applicant Microtek Laboratories Inc., Dayton, Ohio):

"Methods for producing a dimensionally stable phase change material (PCM), and dimensionally stable PCMs are disclosed. The methods include providing a porous base material, mixing a phase change material having a polar functional group with a substance that increases the polar attraction of the phase change material for the porous base material to form a mixture thereof; and, thereafter, mixing the mixture with the porous base material until a selected saturation of phase change material in the porous base material is reached. The methods may include filtering the porous base material after the selected saturation is reached to form a cake of dimensionally stable PCM and, thereafter, reducing the size of the dimensionally stable PCM to an average mean particle size of about 10 to about 50 μm, or more preferably 20 to 30 μm."

http://www.freepatentsonline.com/20190078006.pdf

Microtek introduces new PCM built with nextek encapsulation technology

Ben Welter - Monday, March 11, 2019

Microtek Laboratories of Dayton, Ohio, has developed a new microencapsulated phase change material designed for use in bedding, building materials and consumer textiles.

The biobased PCM, vivtek 29, is offered in wet cake form. It has a melting point of 31º Celsius and a thermal storage capacity of 170 joules per gram. The mean particle size is 14-24 microns.

Microtek says the new product, built using the company’s patented nextek encapsulation technology, “combines robustness, high thermal stability and easy dispersibility” in an aqueous solution and is "less flammable than traditional PCMs." The company quietly introduced vivtek in July 2018.

Microtek President Tim Riazzi says the company has “several projects in the development phase” that use the nextek encapsulation technology.

“Interest in consumer applications [for vivtek] is very good,” Riazzi said. “As with general consumer desires, more and more of our partners are looking and asking for sustainable and bio-based options to add to their product lines.”

https://www.microteklabs.com/blog/introducing-vivtek-29

Research roundup: Radiant floor heating system; mitigation of supercooling; hot water stratification; more

Ben Welter - Friday, March 08, 2019

From Energies:

Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water

From Applied Energy:

Supercooling of phase-change materials and the techniques used to mitigate the phenomenon

From Polymer Chemistry:

Encapsulating an organic phase change material within emulsion-templated poly(urethane urea)s

From AIP Advances:

Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials

From Journal of Materials Chemistry A:

A thermal energy storage composite with sensing function and its thermal conductivity and thermal effusivity enhancement

From Materials Science and Engineering:

Experimental Measurements of Hot Water Stratification in a Heat Storage Tank

From Thermochimica Acta:

Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles

From Energy and Buildings:

Thermal and Structural Performance of Geopolymer Concrete Containing Phase Change Material Encapsulated in Expanded Clay
An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates

From International Journal of Biological Macromolecules:

Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber

From Construction and Building Materials:

Thermal properties of lightweight concrete incorporating high contents of phase change materials

From Progress in Organic Coatings:

Fabrication and characterization of microencapsulated n-heptadecane with graphene/starch composite shell for thermal energy storage

From Sustainable Energy and Fuels:

A thermal energy storage prototype using sodium magnesium hydride

From Thermal Science and Engineering Progress:

Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications

From International Journal of Sports Physiology and Performance:

Exploring the Efficacy of a Safe Cryotherapy Alternative: Physiological Temperature Changes from Cold Water Immersion vs Prolonged Phase Change Material Cooling

From Applied Sciences:

A Form Stable Composite Phase Change Material for Thermal Energy Storage Applications over 700° C

Research roundup: Self-luminous wood composite; palmitic acid/mullite composite; corrosion sensitivity of metal alloys; more

Ben Welter - Tuesday, February 12, 2019

From Energy Storage Materials:

Self-luminous wood composite for both thermal and light energy storage

From International Journal of Refrigeration:

The thermal performances of a refrigerator incorporating a Phase Change Material

From Renewable Energy:

Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage
An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages

From Energy Conversion and Management:

Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation
Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings

From Thermochimica Acta:

Experimental Investigation on Thermal Properties of Sodium Acetate Trihydrate based Phase Change Materials for Thermal Energy Storage
The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling

From Energy and Buildings:

Nano-encapsulation of phase change materials: from design to thermal performance, simulations and toxicological assessment
Investigation of phase change materials integrated with fin-tube baseboard convector for space heating

From Journal of Energy Storage:

Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger

From Applied Energy:

Numerical investigation of phase change material thermal storage for space cooling

From Journal of Materials Chemistry A:

Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal-conductivity and good shape-stability

Patent application: Aliphatic materials in heating and cooling applications

Ben Welter - Wednesday, February 06, 2019

U.S. patent application 20190033009 (applicant Elevance Renewable Sciences Inc., Woodridge, Ill.):

"Aliphatic materials and their use in passive heating and cooling applications are generally disclosed. In some embodiments, dibasic acids and esters (diesters) thereof and their use in passive heating and cooling applications are disclosed. In some embodiments, C18 dibasic acids and esters thereof are disclosed, including their use in passive heating and cooling applications. In some embodiments, various olefins, including alkenes and olefinic acids and esters, are disclosed, including their use in passive heating and cooling applications."

http://www.freepatentsonline.com/20190033009.pdf

Research roundup: Thermal conductivity; decarbonization potential of compact heat storage; liquid desiccant cooling systems; more

Ben Welter - Wednesday, February 06, 2019

From Energy:

Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems

From Renewable Energy:

Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe

From Applied Thermal Engineering:

Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK
Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing
A novel composite phase change material with paraffin wax in tailings porous ceramics
Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems
Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating

From Environmental Research:

Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials

From Colloids and Surfaces A:

A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices

From Microporous and Mesoporous Materials:

Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance

From Applied Energy:

Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube
Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne

From Building and Environment:

Comparative analysis of the PCM application according to the building type as retrofit system

From Construction and Building Materials:

Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete

From Results in Physics:

Application Research of Nano-storage Materials in Cold Chain Logistics of E-commerce Fresh Agricultural Products

From Journal of Energy Storage:

Using PCM as energy storage material in water tanks: Theoretical and experimental investigation

PCM with enhanced thermal properties developed for rail/truck container

Ben Welter - Saturday, January 12, 2019

Professor Yulong DingYulong Ding, the University of Birmingham professor who directed the development of a rail/truck shipping container designed to keep perishables cold without a power supply, says his team developed an organic phase change material with enhanced thermal properties for the project. The PCM is designed to keep the temperature inside the container between 5 and 12˚ C for up to 120 hours. Ding, director of the university's Center for Energy Storage, provided additional detail on the project in an interview this week.

Q: Describe your organization's role in the project.

A: It was funded by CRRC Shijiazhuang, a Chinese railway equipment manufacturer, and the project was collaborative. Our work at Birmingham included PCM materials development and fabrication, cold storage device design and testing, cold charging method and design. Work began in October 2017.

Q: What role did CRRC Shijiazhuang play?

A: CRRC was the project sponsor. Their work included manufacture and test of the device and cold charge device, installation of cold storage devices into large container, data-logging and IT, real application demonstration and testing (35,000 km combined road and railway testing across a wide climate zones).

Q: Can you briefly describe the testing methods and results?

A: I believe two standard containers were used, goods include all sorts of vegetables, flowers and fruits. Energy saving data have not been processed for the real tests but we do have testing data from labs, which is around 20 percent.

Q: Describe the PCM used in the application.

A: We used organic based PCM reformulated for enhanced thermal properties. Melting temperatures can be turned between -4 and 4 degree C, and the thermal storage capacity is >~200 kJ/kg.

Q: How big are the rail containers, typically, and how much PCM is used in each container?

A: We used the standard container for road transportation, which can be used for rail use. I prefer not to say the amount of PCM used, which may need approval from our sponsor.

Q: How is the PCM charged, and how long does it take to charge the PCM in a typical container?

A: We have a mobile charge device. The charging time is relatively short. The details will need our sponsor to approve before I can tell.

Q: In what material is the PCM contained (HDPE, film, metal)?

A: We used composite PCM contained in PCM storage device.

Q: How is the PCM deployed in the rail containers?

A: The PCM devices are installed inside the container.

Q: Does CRRC plan to manufacture the rail containers?

A: I doubt they would make the container.

https://www.birmingham.ac.uk/news/latest/2018/12/scientists-develop-world-first-cold-storage-roadrail-container.aspx

Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:


From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production: