Phase Change Matters RSS


The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.




Research roundup: Alum/expanded graphite composite; geopolymeric mortars; flexible PCMs; more

Ben Welter - Monday, July 30, 2018

From Energy:

Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals

From International Journal of Thermal Sciences:

Numerical study on the effect of phase change materials on heat transfer in asphalt concrete

From The Open Construction & Building Technology Journal:

Thermal Performance of Resource-Efficient Geopolymeric Mortars Containing Phase Change Materials

From Chemical Engineering Journal:

Flexible Phase Change Materials for Thermal Storage and Temperature Control

From Journal of Materials Chemistry A:

Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage

From Materiales de Construcción:

Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings

Research roundup: Novel graphite-PCM composite sphere; sunlight-driven energy conversion; PCM-rich concrete overlay; more

Ben Welter - Tuesday, July 10, 2018

From Applied Thermal Engineering:

A Novel Graphite-PCM Composite Sphere With Enhanced Thermo-Physical Properties
Fatty acids based eutectic phase change system for thermal energy storage applications

From Applied Energy:

Mathematical modeling and sensitivity analysis of solar photovoltaic panel integrated with phase change material
Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology
Multi-parameter optimization design of thermoelectric harvester based on phase change material for space generation

From Solar Energy:

Experimental study on the performance of a novel solar water heating system with and without PCM
Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review
Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review

From Construction and Building Materials:

Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements

From Energy Conversion and Management:

Energy investigation of glazed windows containing Nano-PCM in different seasons
Transforming a passive house into a net-zero energy house: a case study in the Pacific Northwest of the U.S.

Research roundup: Thermoelectric generator system; solar chimney; novel thermal management system for lithium-ion battery pack; more

Ben Welter - Friday, May 18, 2018

From Energy:

Protection and Thermal Management of Thermoelectric Generator System Using Phase Change Materials: An Experimental Investigation
Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack

From Solar Energy:

Efficient energy storage technologies for photovoltaic systems
The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material

From Applied Thermal Engineering:

Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material
Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage

From Thermal Science and Engineering Progress:

Role of Metallic Foam in Heat Storage in the Presence of Nanofluid and MicroEncapsulated Phase Change Material

From International Journal of Heat and Mass Transfer:

Numerical investigation of thermal and optical performance of window units filled with nanoparticle enhanced PCM

From Applied Energy:

Cost estimation and sensitivity analysis of a latent thermal energy storage system for supplementary cooling of air cooled condensers
Influence of design on performance of a latent heat storage system at high temperatures

From Energy Conversion and Management:

Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres

From Energy and Buildings:

Parametric Analysis of Using PCM Walls for Heating Loads Reduction

Research roundup: Eutectic organic PCMs; diatomite/CNTs/PEG composites; cellulose insulation; more

Ben Welter - Tuesday, February 06, 2018

From Data in Brief:

Prediction of the Properties of Eutectic Organic Phase Change Materials

From Energy and Buildings:

Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties

From Solar Energy:

Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls

From Energy Procedia:

A Parametric Study about the Potential to Integrate Phase Change Material into Photovoltaic Panel
Investigations on thermal environment in residential buildings with PCM embedded in external wall
Passive Cooling Using Phase Change Material and Insulation for High-rise Office Building in Tropical Climate
A Study on Latent Heat Energy Storage Performance of Tetradecane
Erythritol-Vermiculite form-stable phase change materials for thermal energy storage

From Applied Thermal Engineering:

Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs

From Renewable Energy:

Experimental Investigation of Solar Chimney with Phase Change Material (PCM)
Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications

From International Journal of Thermal Sciences:

Thermal charging performance of enhanced phase change material composites for thermal battery design

From Colloids and Surfaces A: Physicochemical and Engineering Aspects:

Preparation and characterization of high-temperature non-flowing SiO2/EG/paraffin composites by high-temperature refining

From Materials Today: Proceedings:

Experimental analysis of thermal energy storage by phase change material system for cooling and heating applications

From Materials & Design:

Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network

From Sustainable Cities and Society:

Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room

From International Journal of Refrigeration:

Phase-change thermal energy storage using spherical capsules: performance of a test plant

Research roundup: Eutectic fatty acids; review of automotive applications; expanded graphite composites; more

Ben Welter - Wednesday, January 03, 2018

Prediction of the Properties of Eutectic Fatty Acid Phase Change Materials [Thermochimica Acta]

Phase-change materials (PCM) for automotive applications: A review [Applied Thermal Engineering]

A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability [Composites Science and Technology]

Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage [Composites Part A: Applied Science and Manufacturing]

An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material [Composites Part A: Applied Science and Manufacturing]

Synthesis and characterization of PEG/ZSM-5 composite phase change materials for latent heat storage [Renewable Energy]

Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage [Solar Energy Materials and Solar Cells]

Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage [Solar Energy Materials and Solar Cells]

Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials [Energy Storage Materials]

Phase Change in Spiral Coil Heat Storage Systems [Sustainable Cities and Society]

Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures [Energy]

Geocooling with integrated PCM thermal energy storage in a Mediterranean climate [Energy]

Research roundup: Direct evaporative cooling unit; diatomite-stabilized paraffin; hyperbranched polyurethane; more

Ben Welter - Tuesday, November 21, 2017

Enhancement in free cooling potential through PCM based storage system integrated with Direct Evaporative Cooling (DEC) unit [Energy]

A Numerical Study on Phase Change Inside a Spherical Capsule [Exergetic, Energetic and Environmental Dimensions]

Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material [Energy and Buildings]

Phase Change Materials for Application in Energy-Efficient Buildings [Cost-Effective Energy Efficient Building Retrofitting]

Thermal energy storage using poly(ethylene glycol) (PEG) incorporated hyperbranched polyurethane as solid-solid phase change material (PCM) [Industrial & Engineering Chemistry Research]

Comparative Research on Solar Phase Change Material Storage Wall Systems under Different Summer Working Conditions [Energies]

The Application of Carbon Materials in Latent Heat Thermal Energy Storage (LHTES) [Thermal Transport in Carbon-Based Nanomaterials]

H2O2-microwave treated graphite stabilized stearic acid as a composite phase change material for thermal energy storage [Royal Society of Chemistry]

Sodium acetate–urea composite phase change material used in building envelopes for thermal insulation [Building Services Engineering Research & Technology]

Integration of Pore Confinement and Hydrogen-Bond Influence on the Crystallization Behavior of C18 PCMs in Mesoporous Silica for Form-Stable Phase Change Materials [Sustainable Chemistry & Engineering]

Research roundup: Flexible PCMs with high thermal conductivity; treatment for exercise-induced muscle damage; more

Ben Welter - Thursday, August 31, 2017

Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage [Energy Conversion and Management]

The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study [Journal of Sports Sciences]

Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide [Renewable Energy]

Structure and Thermal Performances of Paraffin/Diatomite Form-stable Phase Change Materials [Chinese Journal of Materials Research]

Research roundup: HDPE spheres; erythritol-based composites; shape-stabilized PCM sheets; graphite foam; more

Ben Welter - Wednesday, August 23, 2017

High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study [Journal of Energy Storage]

Numerical Simulation and Optimization of the Melting Process of Phase Change Material inside Horizontal Annulus [Energies]

Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes [Applied Energy]

Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics [Applied Energy]

Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage [Applied Energy]

Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate [Building and Environment]

Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage [Solar Energy Materials and Solar Cells]

Alkali polyphosphates as new potential materials for thermal energy storage [Solar Energy]

Magnesium phosphate cements formulated with low grade magnesium oxide incorporating phase change materials for thermal energy storage [Construction and Building Materials]

Numerical and experimental investigation of an insulation layer with phase change materials (PCMs) [Energy and Buildings]

Research roundup: INPATH-TES Ph.D. program; waste-to-energy plants; EnergyPlus-based building model; more

Ben Welter - Thursday, June 29, 2017

INPATH-TES: Innovative pathways to PhD research in thermal energy storage [Sustainable and Renewable Energy Engineering]

Application of high temperature phase change materials for improved efficiency in waste-to-energy plants [Waste Management]

Experimental investigation and EnergyPlus-based model prediction of thermal behavior of building containing phase change material [Journal of Building Engineering]

Experimental Analysis of Graphite Dispersed Salt Hydrates based Phase Change Materials to Determine Enhancement in their Thermophysical Properties [pdf] [Journal of Chemical and Pharmaceutical Sciences]

Use of phase change materials during compressed air expansion for isothermal CAES plants [35th UIT Heat Transfer Conference]

Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent) [pdf] [International Research Journal of Engineering and Technology]

Cellulose/Paraffin Composite Fibers for Thermal Energy Storage and Temperature Regulation [IUMRS International Conference in Asia]

Enhanced Specific Heat Capacity of Binary Chloride Salt by Dissolving Magnesium for High-temperature Thermal Energy Storage and Transfer [Journal of Materials Chemistry A]