Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Patent application: Ice-based thermal energy storage device

Ben Welter - Thursday, August 22, 2019

U.S. patent application 20190257593 (applicant Boreales Energy, Hérouville-Saint-Clair, France):

"Disclosed is a heat exchange device including a first thermally conductive tube that is hollow over its length, a second thermally conductive tube that is hollow over its length, and including a thermally conductive fin, in which the fin extends lengthwise along the first tube, the fin extends lengthwise along the second tube and the fin extends width-wise between the first tube and the second tube. ... The invention is open to industrial application or useful in the field of heat accumulators, transferring heat between two phase change materials and in particular for storing energy in the form of ice from freshwater or saltwater or brackish water."

http://www.freepatentsonline.com/20190257593.pdf

PCM briefing: Funding for AMP Clean Energy project; 1414 Degrees to test 'SmartFarm" applications

Ben Welter - Monday, August 19, 2019

Innovate UK’s Knowledge Transfer Partnership has awarded funding to a joint effort by AMP Clean Energy and the University of Birmingham to develop a thermal energy storage system. The system will incorporate phase change material developed by the university for use in AMP’s Urban Reserve flexible electricity generation plants, which will turn waste heat into electricity. The amount of funding was not disclosed.

• Geocryologist Christopher Stevens of SRK North America will give a PCM-related presentation at this week's International  Conference on Cold Regions Engineering in Quebec City: "Phase Change Materials – Innovation in Adaptation Technology to Address Permafrost Thaw" (Aug. 21).

• Australian start-up 1414 Degrees has announced a joint project with Nectar Farms to test “SmartFarm” applications of 1414's technology, which stores electricity as thermal energy by heating and melting containers full of silicon. 

Research roundup: Analysis of hysteresis method in EnergyPlus; pinecone biochar; passive cooling; thermal responses of concrete slabs; more

Ben Welter - Thursday, August 15, 2019

From Applied Thermal Engineering:

Application and sensitivity analysis of the phase change material hysteresis method in EnergyPlus: A case study

From Scientific Reports:

A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage

From Applied Energy:

Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes
Passive cooling through phase change materials in buildings. A critical study of implementation alternatives

From Cement and Concrete Composites:

Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions

From Solar Energy Materials and Solar Cells:

Preparation and thermal properties of low melting point alloy/expanded graphite composite phase change materials used in solar water storage system
Frost and high-temperature resistance performance of a novel dual-phase change material flat plate solar collector

From Energy:

Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application

From IOP Conference Series: Materials Science and Engineering:

Thermal performances and characterization of microencapsulated phase change materials for thermal energy storage

From Journal of Physics: Conference Series:

Effect of thermal performance on melting and solidification of lauric acid PCM in cylindrical thermal energy storage

From Construction and Building Materials:A sodium acetate trihydrate-formamide/expanded perlite composite with high latent heat and suitable phase change temperatures for use in building roof

From Materials Research Express:

Investigation of magnesium nitrate hexahydrate based phase change materials containing nanoparticles for thermal energy storage

From Journal of the Brazilian Society of Mechanical Sciences and Engineering:

Selection of phase change material for solar thermal storage application: a comparative study

From Renewable Energy:

Experimental study on the thermal performance of a grey water heat harnessing exchanger using phase change materials

From International Journal of Energy Research:

Climate applicability study of building envelopes containing phase change materials

PCM briefing: PureTemp fabrics featured at Materio library; new round of funding for Ecozen Solutions

Ben Welter - Friday, July 26, 2019

PureTemp-enhanced fabrics were among the new materials presented at a gathering of architects, designers and journalists at the MatériO library in Paris this week. The materials library, which also has showrooms in Brussels, Seoul and Shanghai, lists thousands of "cutting edge" materials and technologies in its online database, including PureTemp's biobased PCM.

Southern Research opened the new Energy Storage Research Center on its engineering campus in Birmingham, Ala., this month. The center will work to speed the development of clean and sustainable energy storage technology, including thermal energy storage systems. 

Ecozen Solutions of India, which makes portable solar cold rooms for use on small farms, recently closed a Series A round of funding from investors including impact investment fund manager Caspian and Hivos-Triodos Fund, which is affiliated with Netherlands-based Triodos Bank. Omnivore Capital Management Advisors, which originally invested in Ecozen in 2015, also participated in the round, AgFunder News reports. The solar cold room's thermal storage unit can store power for more than 36 hours in case of cloudy or rainy weather. 

Research roundup: Diatomite‐based hydrated salt composites; zinc oxide coating of hermetically encapsulated paraffins; more

Ben Welter - Thursday, July 25, 2019

From International Journal of Energy Research:

Design of diatomite‐based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage

From Journal of Physical Chemistry B:

Clusters in Liquid Fatty Acids: Structure and Role in Nucleation

From Construction and Building Materials:

Development of thermal energy storage lightweight structural cementitious composites by means of macro-encapsulated PCM
Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials

From Journal of Power and Energy:

Numerical modelling of phase change material melting process embedded in porous media: Effect of heat storage size

From Advanced Materials Interfaces:

Phase Change Materials: Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins

From NASA Technical Reports Server:

Utilization of Micro Tube Heat Exchanger for Next Generation Phase Change Material Heat Exchanger Development

From SN Applied Sciences:

Encapsulation of paraffin wax by rigid cross-linked poly (styrene divinylbenzene-acrylic acid) and its thermal characterization

From Energy Conversion and Management:

Transient performance of a Peltier super cooler under varied electric pulse conditions with phase change material

From Applied Thermal Engineering:

Thermal optimization of a kirigami-patterned wearable lithium-ion battery based on a novel design of composite phase change material
An experimental and theoretical study of the solidification process of phase change materials in a horizontal annular enclosure

From Journal of Energy Storage:

Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials

From Renewable Energy:

Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature

From Energy Fuels:

Graphene modified hydrate salt/UV-curable resin form-stable phase change materials: continuously adjustable phase change temperature and ultrafast solar-to-thermal conversion

From Journal of Industrial and Chemical Engineering:

Thermal performance enhancement of a phase change material with expanded graphite via ultrasonication

From Chemistry Select:

Microencapsulation of Stearic Acid into Strontium Titanate Shell by Sol‐Gel Approach for Thermal Energy Storage

Research roundup: Thermally conductive HDPE; pentaerythritol; RT44HC; epoxy resin composites; more

Ben Welter - Thursday, July 18, 2019

From Journal of Applied Polymer Science:

Thermally conductive high-density polyethylene as novel phase-change material: Application-relevant long-term stability
Reliable phase‐change polyurethane crosslinked by dynamic ionic‐bond crosslinking for thermal energy storage

From International Journal of Heat and Mass Transfer:

A molecular dynamics study of the effects of crystalline structure transition on the thermal conductivity of pentaerythritol as a solid-solid phase change material
A comparative study of the effect of varying wall heat flux on melting characteristics of phase change material RT44HC in rectangular test cells
High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles

From Materials Research Express:

Evaluation of thermophysical properties of shaped inorganic hydrated salt-based phase change materials for wall energy storage

From Construction and Building Materials:

Measurement and analysis of thermophysical parameters of the epoxy resin composites shape-stabilized phase change material
Thermal enhanced cement-lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers

From Energy and Buildings:

Properties of concretes enhanced with phase change materials for building applications

From Hong Kong Polytechnic University:

Development of encapsulation methods for organic-based phase change materials in water

From Journal of Energy Storage:

Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials

From Energy Conversion and Management:

Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system

From Energies:

Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study

From Renewable Energy:

Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system

From IOP Conference Series: Earth and Environmental Science:

Simulation and Analysis of Fuel Tank Heat Exchanger Based on Phase Change Material
Simulation Analysis of Thermal Storage Process of Phase Change Energy Storage Materials

From Nano-Structures & Nano-Objects:

Synthesis of organic phase change materials by using carbon nanotubes as filler material

From Processes:

Preparation and Performance Analysis of Graphite Additive/Paraffin Composite Phase Change Materials

From International Conference on Human-Computer Interaction:

Thermoregulating and Hydrating Microcapsules: Contributions of Textile Technology in the Design of Wearable Products for Wheelchair Dependents

From Materials Today:

Experimental study on hybrid natural circulation type solar air heater with paraffin wax based thermal storage

From Thermal Science and Engineering Progress:

Numerical and Experimental Investigation of Melting Characteristics of Phase Change Material-RT58

Research roundup: Spent coffee grounds; tropical tree fruit oils; natural rubber composites; more

Ben Welter - Friday, July 05, 2019

From Chemosphere:

Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes

From Biotechnology Reports:

Novel phase change materials for thermal energy storage: evaluation of tropical tree fruit oils

From Construction and Building Materials:

Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material
Thermal enhanced cement-lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers

From Case Studies in Thermal Engineering:

Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unite

From Materials Chemistry and Physics:

Porous geopolymer as a possible template for a phase change material

From Journal of Physics: Conference Series:

Thermophysical Characteristics of VCO-Soybean Oil Mixture as Phase Change Material (PCM) using T-History Method

From Rubber Chemistry and Technology:

Phase-Change Material: Natural Rubber Composites for Heat Storage Applications

From Powder Technology:

An enthalpy based discrete thermal modelling framework for particulate systems with phase change materials

From Chemistry Select:

Carbon Soot/n–carboxylic Acids Composites As Form‐stable Phase Change Materials For Thermal Energy Storage

From International Journal of Heat and Mass Transfer:

Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials
High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles

From Applied Thermal Engineering:

Design optimization of the phase change material integrated solar receiver: A numerical parametric study

From Solar Energy Materials and Solar Cells:

Synthesis and characterization of ditetradecyl succinate and dioctadecyl succinate as novel phase change materials for thermal energy storage

From Advanced Materials Interfaces:

Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins

From Journal of Energy Storage:

Heat transfer enhancement of charging and discharging of phase change materials and size optimization of a latent thermal energy storage system for solar cold storage application

PCM briefing: Axiotherm wins 2 innovation awards; newly commissioned pilot power plant in Sweden uses SaltX TES

Ben Welter - Friday, July 05, 2019

ESDA-Axiotherm GmbH won two awards in this year's INNOspace Masters ideas competition. The competition, sponsored by the Space Administration of the German Aerospace Center, honors innovative ideas that address the challenges faced by the space industry. The winners were announced this week in Berlin. ESDA-Axiotherm won the overall prize for the development of a PCM polymer compound for the thermal stabilization of components and systems. The German company also won the OHB Challenge, which honors ready-to-use solutions.

Noor Abu Dhabi, the world’s largest single-site solar power project with an installed capacity of 1,177 MW, has been successfully commissioned. The project is a joint venture between the government of Abu Dhabi and a consortium comprising Marubeni Corp., Japan, and Jinko Solar Holding, China. Abu Dhabi says the project's 3.2 million solar  panels provide enough power for 90,000 people. 

• The Swedish power producer Vattenfall has commissioned an industrial-scale, 0.5 MW/10 MWh, pilot test facility at its Reuter power plant, employing thermal energy storage technology developed by SaltX of Sweden. The technology uses nano-coated salts to store thermal energy. 

Croda International Plc posted a product announcement on its LinkedIn page this week: "CrodaTherm can be incorporated into wearable and non-wearable textile fibres to improve temperature regulation." There's more information on crodatherm.com. According to the website, Croda has encapsulated its bio-based phase change material "in a durable acrylic polymer shell, so that when the bio-based core changes phase, the particle remains solid." I hope to have more details on the technology in time for next week's newsletter.

Patent application: Latent heat storage device

Ben Welter - Friday, June 21, 2019

U.S. patent application 20190186844 (applicant Tohoku University, Sendai-shi, Japan):

"A latent heat storage device includes: a heat transfer cylindrical body allowing a flow of a heat medium inside thereof and being rotatable about a longitudinal axis as a center of rotation; a fixed blade being adjacent to or in a slidable contact with an outer peripheral surface of the heat transfer cylindrical body; and a latent heat storage material disposed around the heat transfer cylindrical body, wherein by rotation of the heat transfer cylindrical body, the fixed blade scrapes a solidified body of the latent heat storage material adhering to the outer peripheral surface of the heat transfer cylindrical body off the outer peripheral surface of the heat transfer cylindrical body, and creates circulation of the latent heat storage material."

http://www.freepatentsonline.com/20190186844.pdf

Research roundup: Form-stable PCM; polyethylene glycol/quartz composites; fuzzy clustering; more

Ben Welter - Tuesday, June 18, 2019

From Renewable Energy:

A N-octadecane/hierarchically Porous TiO2 Form-Stable PCM for Thermal Energy Storage

From International Journal of Energy Research:

Hybrid solar parabolic dish power plant and high‐temperature phase change material energy storage system

From Journal of Applied Polymer Science:

Thermal and dynamic mechanical properties of polyethylene glycol/quartz composites for phase change materials

From Journal of Cleaner Production:

Using fuzzy clustering and weighted cumulative probability distribution techniques for optimal design of phase change material thermal energy storage

From Construction and Building Materials:

Thermoregulation effect analysis of microencapsulated phase change thermoregulation agent for asphalt pavement

From Applied Energy:

Residential cooling using separated and coupled precooling and thermal energy storage strategies