Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

Two Entropy advisors, Dr. Mohammed Farid and Lucas B. Hyman, are pleased to take your questions about PCMs and thermal energy storage. Send your questions to bwelter@puretemp.com. We'll select the best and post the answers here each week.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Rubber sealing materials; pork fat as novel PCM; thermal inertia of buildings; more

Ben Welter - Wednesday, September 20, 2017

Feasibility of Using Microencapsulated Phase Change Materials as Filler for Improving Low Temperature Performance of Rubber Sealing Materials [Soft Matter]

Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study [Energy Conversion and Management]

Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics [Journal of Cleaner Production]

Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity [Solar Energy Materials and Solar Cells]

Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement [Solar Energy Materials and Solar Cells]

Solar desalination using solar still enhanced by external solar collector and PCM [Applied Thermal Engineering]

Using Thermal Inertia of Buildings with Phase Change Material for Demand Response [Energy Procedia]

Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage [Energy Procedia]

Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials [International Journal of Heat and Mass Transfer]

PCM briefing: Three molten salt projects projects move forward in U.S., Germany

Ben Welter - Tuesday, September 19, 2017

Terrafore salt encapsulation• The U.S. Department of Energy has released funding to the Argonne National Laboratory for a scaled-up round of independent testing of Terrafore Technologiesencapsulated thermal energy storage in phase change salts. The materials, shown at right, are designed to operate in temperatures to greater than 800° C in a single tank that acts as both storage and heat exchanger.

• The Department of Energy has invited Terrestrial Energy USA to submit the second part of its application for a federal loan guarantee to support the licensing and construction of its Integrated Molten Salt Reactor

DLR has fired up the TESIS thermal storage facility in Cologne, Germany. One hundred tons of molten salt is alternately heated and cooled from 250 to 560 degrees Celsius in the test facility, which is designed to allow industrial-scale testing of temporary storage methods for renewable energy and waste heat. 

• Va-Q-tec AG is reporting a strong increase in its service business in the first half of 2017, up 54 percent to 8.8 million euros. The company, based in Würzburg, Germany, develops, manufactures and sells vacuum insulation panels and phase change materials. 

• New from Zion Market Research: "Global thermal storage market is expected to reach USD 5.7 billion in 2022, growing at a CAGR of 10.7% between 2017 and 2022"

Advanced combat clothing featuring "four-way stretch phase-change material" was on display last week at the annual Defense and Security Equipment International show in London. Royal College of Art researchers and designers collaborated with the Ministry of Defense on the prototypes, which are designed to be easy to run in and comfortable to wear.  

Research roundup: PCM wallboard; composite Trombe solar wall; indoor thermal comfort; more

Ben Welter - Friday, September 15, 2017

Energetic performance of two different PCM wallboards and their regeneration behavior in office rooms [Energy Procedia]

Correlation between energy efficiency in buildings and comfort of the users [Energy Procedia]

Numerical study of a composite Trombe solar wall integrating microencapsulated PCM [Energy Procedia]

Design of High Temperature Thermal Energy Storage for High Power Levels [Sustainable Cities and Society]

Numerical analysis of heat transfer processes in a low-cost, high-performance ice storage device for residential applications [Applied Thermal Engineering]

Solid-liquid phase change investigation through a double pipe heat exchanger dealing with time-dependent boundary conditions [Applied Thermal Engineering]

Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites [Applied Energy]

Indoor thermal comfort assessment using different constructive solutions incorporating PCM [Applied Energy]

The experimental phase diagram study of the binary polyols system erythritol-xylitol [Solar Energy Materials and Solar Cells]

Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity [Materials Science and Engineering: B]

Patent application: TES systems comprising encapsulated PCMs and a neutralizing agent

Ben Welter - Wednesday, September 13, 2017

U.S. patent application 20170254601 (applicant Entropy Solutions LLC, Plymouth, Minn.):

"Provided are Thermal Energy Storage (TES) systems comprising Phase Change Material (PCMs) compositions for thermal management in different applications such as building, automotive, and industrial applications. Provided are TES systems comprising encapsulated PCMs and a heat transfer medium comprising a neutralizing agent and/or an ion exchange resin capable of neutralizing the acidic or basic PCM contained in the capsules, should the PCM permeate the walls of the capsules or otherwise be released into the surrounding heat transfer medium."

http://www.freepatentsonline.com/20170254601.pdf

PCM briefing: Solar-powered micro cold rooms; Axiom Exergy's jazz connection

Ben Welter - Wednesday, September 13, 2017

• The German company Covestro is providing technology for use in solar-powered micro cold rooms in India. The cold rooms employ phase change material to keep produce cool until it can be transported from farm to market. Eight hundred units will be built in the Indian state of Telangana over the next two years. 

• In an interview with the San Jose Mercury News, Anthony Diamond talks about the musical connection he shares with Axiom Exergy co-founder Amrit Robbins. They met as undergrads at Stanford University. "I play saxophone, he’s actually a trumpet player," Diamond said. "He was like, the best jazz trumpet player on campus. So whenever I had a gig, I would call him, and vice-versa. We had an opportunity to collaborate a lot within that context. I knew that I worked really well with him and we were a really great team."

• Heat battery maker Sunamp Ltd. is one of 15 European scaleups selected to give presentations in California next week at Startup Europe Comes to Silicon Valley

Pelican BioThermal has opened a service center in Puerto Rico. The center will serve as a depot for the company’s Credo on Demand rental program and enable customers to receive and return reusable temperature controlled packaging systems.

Facebook has announced that its cloud campus in Odense, Denmark, will be connected to a neighborhood district heating system. The company expects the system will warm 6,900 homes.

Evelyn Wang, director of MIT’s Device Research Laboratory and an internationally recognized leader in phase change heat transfer on nanostructure surfaces, has been named associate department head of operations in the school's Department of Mechanical Engineering.  

Long-Qing Chen, professor of engineering science, mechanics and mathematics at Penn State University, has been awarded a Humboldt Research Award by the Alexander von Humboldt Foundation of Germany. Chen will work with Jürgen Rödel, professor of materials science and engineering at the Technische Universität Darmstadt, on areas of mutual interest, including multiferroic thin films and phase change materials.

MIT researchers are taking a look at 3,000-year-old technology that could help reduce the use of fossil fuels. Under the proposal, electric resistance heaters would convert excess electricity into heat. The heat would be stored in a large mass of firebricks, which can retain heat for long periods if they are enclosed in an insulated casing. The heat could be used directly for industrial processes, or it could feed generators that convert it back to electricity when the power is needed.  

Value of TES 'not always fully recognized by policymakers'

Ben Welter - Wednesday, September 13, 2017

Heating and cooling in buildings and industry accounts for half of Europe's energy consumption, and yet the potential “immense value” of thermal energy storage has barely been explored, the head of an energy storage trade group says. 

Patrick Clerens“Despite its immense value to the energy system, the role of thermal energy storage concepts is not always fully recognized by policymakers,” Patrick Clerens, secretary-general of the European Association for Storage of Energy, said in an interview with Energy Storage News. 

“For example, the ongoing discussions about the energy storage definition in the European Parliament would appear to exclude thermal energy storage and Power-to-Gas, or Power-to-Liquids. A broader energy storage definition, such as the European Commission’s initial proposal, is needed to allow all energy storage technologies to be considered.”

In a position paper published in July, the trade group called for economic incentives such as accelerated depreciation, better regulatory framework to “ensure non-discriminatory access to energy grids” and improved support from European Union research agencies.

https://www.energy-storage.news/news/immense-value-of-thermal-energy-storage-not-yet-recognised-by-europes-polic

Research roundup: Supercooling in paraffin slurry; double-composition microencapsulation; encapsulated nitrates; more

Ben Welter - Thursday, September 07, 2017

Reduction of supercooling in paraffin phase change slurry by polyvinyl alcohol [International Journal of Refrigeration]

Preparation, characterization, and thermal stability of double-composition shell microencapsulated phase change material by interfacial polymerization [Colloid and Polymer Science]

Heat transfer characteristics of a hybrid thermal energy storage tank with Phase Change Materials (PCMs) during indirect charging using isothermal coil heat exchanger [Solar Energy]

Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability [Solar Energy Materials and Solar Cells]

Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants [Energies 2017]

Research roundup: Influence of nanoparticle morphology; battery thermal management; concrete pavement; more

Ben Welter - Wednesday, September 06, 2017

Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as Phase Change Material [Applied Thermal Engineering]

The optimal allocation of the PCM within a composite wall for surface temperature and heat flux reduction: an experimental approach [Applied Thermal Engineering]

An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations [Applied Thermal Engineering]

Using phase change material in under floor heating [Energy Procedia]

Incorporating phase change materials in concrete pavement to melt snow and ice [Cement and Concrete Composites]

Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures [Applied Energy]

Experimental study on thermal performance of phase change material passive and active combined using for building application in winter [Applied Energy]

Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications [Renewable and Sustainable Energy Reviews]

Advancement in phase change materials for thermal energy storage applications [Solar Energy Materials and Solar Cells]

Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage [Solar Energy Materials and Solar Cells]

Patent application: Heat exchanger and storage device

Ben Welter - Thursday, August 31, 2017

U.S. patent application 20170248375 (assignee BorgWarner Inc., Auburn Hills, Mich.):

"A product with a heat generating system, the product having a heat storage medium constructed and arranged to receive and store heat from the heat generating system wherein the product is constructed and arranged to trigger, extract, and use the stored heat, the heat storage medium receiving heat from the heat generating system during which heat storage in the heat storage medium increases at a first rate to a point where a phase change of the heat storage medium occurs and increases at a second rate during the phase change of the energy storage medium at a phase change temperature, the second rate being substantially higher than the first rate and wherein the extraction and use of heat by the product is triggered by a generator at a temperature that is lower than the phase change temperature."

http://www.freepatentsonline.com/20170248375.pdf

Patent application: Refrigeration, or thermal, energy storage system

Ben Welter - Thursday, August 31, 2017

Refrigeration TES system patent drawing

U.S. patent application 20170248377 (applicants Upgrading Services SPA and Labor SRL, Italy):

"A refrigeration, or thermal, energy storage system for storing refrigeration, or thermal, energy, comprising a body, closed and insulated, the body being configured to contain two fluids, respectively a Phase Change Material (PCM) type fluid and a secondary fluid, the two fluids being immiscible with each other and having different densities, so as to be stratified within the volume of the body; withdrawal means configured to draw the secondary fluid from the body, and to convey the same inside a heat exchanger configured to exchange frigories, or calories, with the secondary fluid; and distribution means configured to draw the secondary fluid from the heat exchanger, and distribute the secondary fluid into the PCM type fluid, so that the secondary fluid exchanges with the PCM type fluid frigories, or calories, absorbed in the heat exchanger, the secondary fluid having a solidification temperature substantially lower than that of the PCM type fluid."

http://www.freepatentsonline.com/20170248377.pdf