Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Natural convection heat transfer; simulation of hysteresis effects; PCM in roofs; more

Ben Welter - Wednesday, June 20, 2018

From Energy Conversion and Management:

Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit
Numerical study on the effect of non-uniform magnetic fields on melting and solidification characteristics of NEPCMs in an annulus enclosure
Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates

From International Communications in Heat and Mass Transfer:

A method to evaluate natural convection heat transfer in microencapsulated phase change material (MPCM) slurry: An experimental study
Dynamic of plumes and scaling during the melting of a Phase Change Material heated from below

From Applied Thermal Engineering:

Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system
Low-temperature macro-encapsulated phase change material based thermal energy storage system without air void space design

From Energy and Buildings:

Modeling and experimental validation of an algorithm for simulation of hysteresis effects in phase change materials for building components
Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications

From Solar Energy:

How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions

From Energy:

A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparticle for both thermal energy storage and antimicrobial purpose

From Reference Module in Materials Science and Materials Engineering:

Materials, Design and Development of Latent Heat Storage Systems for Medium and Large-Scale Applications: Issues and Challenges

From Physica A: Statistical Mechanics and its Applications:

Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method

From Solar Energy Materials and Solar Cells:

Synthesis and characterization of chain-extended and branched polyurethane copolymers as form stable phase change materials for solar thermal conversion storage

From Construction and Building Materials:

Investigation of different materials for macroencapsulation of salt hydrate phase change materials for building purposes

From Journal of Energy Storage:

CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources
Performance analysis of industrial PCM heat storage lab prototype

Research roundup: Heat transfer enhancement of PCMs; CuO/palmitic acid composite; cooking applications; more

Ben Welter - Tuesday, June 12, 2018

From Materials Today: Proceedings:

Investigation of thermal performance by applying a solar chimney with PCM towards the natural ventilation of model house under Climate of Thailand
Study of Solar– PCM Walls for domestic hot water production under the tropical climate of Thailand
Improved Performance of Composite Phase Change Material for Thermal Energy Storage
Experimental investigation on freezing/melting characteristics of two different phase change materials
Review on Heat Transfer Enhancement of Phase Change Materials (PCMs)
Experimental Investigation of Improved Thermal Characteristics of Al2O3/Barium Hydroxide Octa Hydrate as Phase Change Materials (PCMs)
Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material

From Applied Thermal Engineering:

An Experimental Investigation of the Melting Process of a Bio-based Nano-PCM filled Vertical Cylindrical Thermal Energy Storage System

From International Journal of Heat and Mass Transfer:

Experimental investigation of the effects of mass fraction and temperature on the viscosity of microencapsulated PCM slurry

From Journal of the Brazilian Society of Mechanical Sciences and Engineering:

Rapid thermal cycling of three phase change materials (PCMs) for cooking applications

From 3rd Thermal and Fluids Engineering Conference:

Use of Wood/Phase Change Material Composite in the Building Envelope for Building Thermal Control and Energy Savings

Research roundup: N-octadecane/polystyrene/expanded graphite composites; decorative wood-based panels for thermal energy storage; more

Ben Welter - Monday, June 11, 2018

From Energy:

Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials

From Green Energy and Environment:

Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage

From Chemical Engineering Science:

Melt-Front Propagation and Velocity Profiles in Packed Beds of Phase-Change Materials Measured by Magnetic Resonance Imaging

From Thermal Science and Engineering Progress:

Employment of Finned PCM Container in a Household Refrigerator as a Cold Thermal Energy Storage System

From Energy Conversion and Management:

Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system
Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage

From Construction and Building Materials:

Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement
A practical ranking system for evaluation of industry viable phase change materials for use in concrete
Experimental and numerical study of thermal performance of the PCM wall with solar radiation
Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs) 

From International Journal of Thermophysics:

Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

Research roundup: Variable conductance heat pipe; micro-nanoencapsulated n-eicosane with PMMA shell; more

Ben Welter - Wednesday, May 30, 2018

From Thermal Science and Engineering Progress:

Experimental investigation into the feasibility of using a variable conductance heat pipe for controlled heat release from a phase-change material thermal store

From Thermochimica Acta:

Form-stable phase change nanocomposites for thermal energy storage based on hypercrosslinked polymer nanospheres

From International Journal of Thermal Sciences:

Non-monotonously tuning thermal conductivity of graphite-nanosheets/paraffin composite by ultrasonic exfoliation

From Sustainable Computing: Informatics and Systems:

A review of thermal management and innovative cooling strategies for data center

From Renewable Energy:

Numerical analysis of a latent heat thermal energy storage system under partial load operating conditions

From Energy Conversion and Management:

Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting

From Solar Energy Materials and Solar Cells:

Performance of novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar power plants (Part II)

From Materials Chemistry and Physics:

Synthesis and Characterization of Micro-Nanoencapsulated n-eicosane with PMMA Shell as Novel Phase Change Materials for Thermal Energy Storage

PMMA shell as novel phase change material

Research roundup: Concrete as thermal mass material; nanoparticle-enhanced PCM; moisture migration in porous building materials; more

Ben Welter - Friday, April 27, 2018

Concrete as a thermal mass material for building applications - A review [Journal of Building Engineering]

Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity [Journal of Cleaner Production]

Effect of moisture migration and phase change on effective thermal conductivity of porous building materials [International Journal of Heat and Mass Transfer]

Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance [Solar Materials and Solar Cells]

Research roundup: Solar absorption cooling systems; air-PCM storage unit; cement slurry; more

Ben Welter - Tuesday, April 24, 2018

Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials [Applied Energy]

Experimental validation of an air-PCM storage unit comparing the Effective Heat Capacity and Enthalpy methods through CFD simulations [Energy]

Controlling the heat evaluation of cement slurry system used in natural gas hydrate layer by micro-encapsulated phase change materials [Solar Energy]

Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system [Applied Thermal Engineering]

Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation [Applied Thermal Engineering]

Life Cycle Assessment of Innovative Materials for Thermal Energy Storage in Buildings [Procedia CIRP]

Research roundup: Fabrication of shape-stable composite PCMs; battery thermal management; segmented heat storage; more

Ben Welter - Wednesday, April 18, 2018

Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction [Thermochimica Acta]

Performance analysis of PCM based thermal energy storage system containing nanoparticles [International Research Journal of Engineering and Technology]

Cold temperature performance of phase change material based battery thermal management systems [Energy Reports]

Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system [Applied Energy]

Macro-encapsulation and characterization of chloride based inorganic phase change materials for high temperature thermal energy storage systems [Applied Energy]

Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate [Applied Energy]

Fabrication of high thermal conductive shape-stabilized polyethylene glycol/silica phase change composite by two-step sol gel method [Composites Part A: Applied Science and Manufacturing]

Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review [International Communications in Heat and Mass Transfer]

Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications [IOP Conference Series: Earth and Environmental Science]

Research roundup: Microcapsule with SiO2-TiO2 hybrid shell; finned rectangular enclosures; glazed roof with PCM; more

Ben Welter - Wednesday, April 11, 2018

Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell [Solar Energy]

Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles [Experimental Thermal and Fluid Science]

Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation [Journal of Cleaner Production]

Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption [Applied Energy]

Thermal field and heat storage in a cyclic phase change process caused by several moving melting and solidification interfaces in the layer [International Journal of Thermal Sciences]

A phase change microactuator based on paraffin wax/expanded graphite/nickel particle composite with induction heating [Sensors and Actuators A: Physical]

Research roundup: Solar thermal façades; domestic hot water system; triplex-tube heat exchanger; more

Ben Welter - Tuesday, April 10, 2018

Overheating protection of solar thermal façades with latent heat storages based on paraffin-polymer compounds [Energy and Buildings]

Single and combined phase change materials: Their effect on seasonal transition period [Energy and Buildings]

Macroencapsulation of sodium chloride as phase change materials for thermal energy storage [Solar Energy]

Investigation of PCM Charging for the Energy Saving of Domestic Hot Water System [Applied Thermal Engineering]

Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials [Construction and Building Materials]

Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger [International Journal of Heat and Mass Transfer]

Patent application: Heat storage material

Ben Welter - Thursday, April 05, 2018

U.S. patent application 20180094180 (applicant Hutchinson SA, Paris, France):

"The invention relates to a material including a support consisting of a porous composite material including at least one polymer phase forming a binder based on at least one polymer selected from thermoplastic polymers, elastomers, and elastomer thermoplastics, and at least one filler selected from thermally conductive fillers, the pores of the support consisting of the porous composite material being partially or entirely filled with at least one phase-change material. The invention also relates to a method for producing said material."

http://www.freepatentsonline.com/20180094180.pdf