Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Research roundup: Analysis of hysteresis method in EnergyPlus; pinecone biochar; passive cooling; thermal responses of concrete slabs; more

Ben Welter - Thursday, August 15, 2019

From Applied Thermal Engineering:

Application and sensitivity analysis of the phase change material hysteresis method in EnergyPlus: A case study

From Scientific Reports:

A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage

From Applied Energy:

Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes
Passive cooling through phase change materials in buildings. A critical study of implementation alternatives

From Cement and Concrete Composites:

Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions

From Solar Energy Materials and Solar Cells:

Preparation and thermal properties of low melting point alloy/expanded graphite composite phase change materials used in solar water storage system
Frost and high-temperature resistance performance of a novel dual-phase change material flat plate solar collector

From Energy:

Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application

From IOP Conference Series: Materials Science and Engineering:

Thermal performances and characterization of microencapsulated phase change materials for thermal energy storage

From Journal of Physics: Conference Series:

Effect of thermal performance on melting and solidification of lauric acid PCM in cylindrical thermal energy storage

From Construction and Building Materials:A sodium acetate trihydrate-formamide/expanded perlite composite with high latent heat and suitable phase change temperatures for use in building roof

From Materials Research Express:

Investigation of magnesium nitrate hexahydrate based phase change materials containing nanoparticles for thermal energy storage

From Journal of the Brazilian Society of Mechanical Sciences and Engineering:

Selection of phase change material for solar thermal storage application: a comparative study

From Renewable Energy:

Experimental study on the thermal performance of a grey water heat harnessing exchanger using phase change materials

From International Journal of Energy Research:

Climate applicability study of building envelopes containing phase change materials

Croda began work on new microencapsulated PCM four years ago

Ben Welter - Friday, July 26, 2019

UK-based Croda International recently announced the launch of a microencapsulated form of biobased phase change material developed at the company's PCM technical center in Netherlands. The new material is designed to be used to control temperatures in bedding, mattresses, automotive interiors, clothing and other applications.

Jerome Gonthier and Martin ButtersThe development was led by Marco Auerbach and Jerome Gonthier, working with colleagues who have expertise in microencapsulation and acrylic polymer. Martin Butters, a specialist in PCM applications and business development, also supported the project.

Gonthier and Butters provided details on the new material in an email interview.

Q: What prompted the decision to develop this technology?

A: "Having established a range of high-quality bio-based PCMs, market demand led us to explore the microencapsulation of these PCMs. Microencapsulation converts the PCM into particles that are offered to the market in two forms, powder and water-based dispersion. Microencapsulated PCMs are often advantageous for use in composite materials such as coatings, fibers and other matrices where PCM leakage needs to be avoided."

Q: How long did it take to complete the project?

A: "Overall the project ran for about four years leading to the launch of the first products in 2018."

Q: Did the team surmount any unexpected challenges, technical or otherwise?

A: "The challenges were mainly those we expected – achieving microcapsules with good durability, very low levels of free wax and overcoming sub-cooling (reduction in crystallisation temperature due to microencapsulation)."

Q: When did Croda officially launch the technology commercially?

SEM photo of CrodaTherm ME29P (powder grade) A: "The first products, CrodaTherm ME 29D (50% dispersion) and CrodaTherm ME 29P (powder), which are 29º C melting point products, were launched in Q4 2018. 32º C versions will be added to the range shortly and we expect the range to be further extended with other operating temperatures in due course."

Q: Does Croda manufacture fibers and textiles with the microencapsulated PCM? Or does it manufacture the MPCM and sell it to fiber and textile manufacturers?

A: "Croda does not produce fibers or textiles, instead we specialize in offering PCMs that are developed and manufactured in-house, for use in such applications (and many more)."

Q: What specs can you share on the MPCM, such as composition, peak melt point and latent heat storage capacity?

A: "We microencapsulate CrodaTherm bio-based PCMs with an acrylic-type shell. For CrodaTherm ME 29D and ME 29P, peak melting temperature is 29ºC and latent heat is typically about 180 J/g."

Q: Does the MPCM have any properties, such as latent heat storage capacity or ease of manufacture, that sets it apart from competing products?

A: "We use internally produced bio-based PCM, rather than paraffin waxes sourced externally from the market, meaning we have full control over quality and the products have high bio-based content and excellent thermal properties."

Q: Have textiles embedded with this MPCM undergone thermal effusivity testing or other tests that would confirm their effectiveness in managing temperatures in consumer products?

A: "Several tests have been carried out to confirm the performance of materials embedded with mPCM and further work will be carried out, including thermal effusivity."

Q: Will the technology be used in any products scheduled for release this year or next?

A: "A number of projects are underway for different applications, so we’ll have to wait and see!"

PCM briefing: PureTemp fabrics featured at Materio library; new round of funding for Ecozen Solutions

Ben Welter - Friday, July 26, 2019

PureTemp-enhanced fabrics were among the new materials presented at a gathering of architects, designers and journalists at the MatériO library in Paris this week. The materials library, which also has showrooms in Brussels, Seoul and Shanghai, lists thousands of "cutting edge" materials and technologies in its online database, including PureTemp's biobased PCM.

Southern Research opened the new Energy Storage Research Center on its engineering campus in Birmingham, Ala., this month. The center will work to speed the development of clean and sustainable energy storage technology, including thermal energy storage systems. 

Ecozen Solutions of India, which makes portable solar cold rooms for use on small farms, recently closed a Series A round of funding from investors including impact investment fund manager Caspian and Hivos-Triodos Fund, which is affiliated with Netherlands-based Triodos Bank. Omnivore Capital Management Advisors, which originally invested in Ecozen in 2015, also participated in the round, AgFunder News reports. The solar cold room's thermal storage unit can store power for more than 36 hours in case of cloudy or rainy weather. 

Glacier Tek adds flexible PCM microspheres to new line of cooling packs

Ben Welter - Monday, July 15, 2019

Glacier Tek LLC of Minneapolis has incorporated flexible PCM microspheres in the cooling packs used in its Flex Vest line of cooling vests. 

Glacier Tek's new cooling packsThe cooling packs, redesigned for improved comfort and performance, feature a soft, durable nylon shell. They reach a flexible state more quickly and feel colder than the previous packs. 

The Flex Vest is designed to maintain a comfortable microclimate of 18 degrees C for up to 2.5 hours. The new packs can be recharged in about 30 minutes in ice water or two hours in a refrigerator. But they are most effective when fully solidified in a freezer, which takes about an hour. The cooling packs weigh about 164 grams each and fit into 12 pockets inside the vest.

The novel cooling material, developed by PureTemp LLC of Minneapolis, is composed of a biobased phased change material. It is similar to the material used in the Glacier Tek therapy cooling packs introduced at the American College of Sports Medicine trade show in Orlando in May.

"PureTemp is excited to bring this shape-stabilized PCM format to the market," said Chris Servais, vice president of operations at PureTemp. "Glacier Tek has capitalized on its unique and improved characteristics.”

https://glaciertek.com/spare-flex-vest-cooling-pack-set/

Research roundup: Foamed cement blocks; polyethylene glycol/wood flour composites; radiant ceiling panels; more

Ben Welter - Thursday, July 11, 2019

From Trends in Food Science & Technology:

Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry

From Solar Energy Materials and Solar Cells:

A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material
Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage
Spray-graphitization as a protection method against corrosion by molten nitrate salts and molten salts based nanofluids for thermal energy storage applications
Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage
Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite

From Solar Energy:

Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction

From Energy and Buildings:

Numerical study of the electrical load shift capability of a ground source heat pump system with phase change thermal storage

From International Conference on Materials, Environment, Mechanical and Industrial Systems:

Simulation-based analysis of the use of PCM and shading devices to improve the thermal comfort in buildings

From Applied Thermal Engineering:

Experimental study of a pilot-scale fin-and-tube phase change material storage
On-demand Intermittent Ice Slurry Generation for Subzero Cold Thermal Energy Storage: Numerical Simulation and Performance Analysis
Atomistic modelling of water transport and adsorption mechanisms in silicoaluminophosphate for thermal energy storage

From Clima 2019, 13th REHVA World Congress:

Experimental comparison of radiant ceiling panels and ceiling panels containing phase change material (PCM)

From Journal of Energy Storage:

Review of stability and thermal conductivity enhancements for salt hydrates
Characterisation of promising phase change materials for high temperature thermal energy storage

From Journal of Cleaner Production:

Self-assembly of 3D-graphite block infiltrated phase change materials with increased thermal conductivity

From Sustainable Cities and Society:

Thermal Performance Difference of Phase Change Energy Storage Units Based on Tubular Macro-encapsulation

From Renewable and Sustainable Energy Reviews:

State-of-technology review of water-based closed seasonal thermal energy storage systems

From Applied Energy:

Thermal energy storage in district heating and cooling systems: A review

From Polymers:

Fabrication and Characterization of Novel Shape-Stabilized Phase Change Materials Based on P(TDA-co-HDA)/GO Composites 

Research roundup: Spent coffee grounds; tropical tree fruit oils; natural rubber composites; more

Ben Welter - Friday, July 05, 2019

From Chemosphere:

Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes

From Biotechnology Reports:

Novel phase change materials for thermal energy storage: evaluation of tropical tree fruit oils

From Construction and Building Materials:

Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material
Thermal enhanced cement-lime mortars with phase change materials (PCM), lightweight aggregate and cellulose fibers

From Case Studies in Thermal Engineering:

Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unite

From Materials Chemistry and Physics:

Porous geopolymer as a possible template for a phase change material

From Journal of Physics: Conference Series:

Thermophysical Characteristics of VCO-Soybean Oil Mixture as Phase Change Material (PCM) using T-History Method

From Rubber Chemistry and Technology:

Phase-Change Material: Natural Rubber Composites for Heat Storage Applications

From Powder Technology:

An enthalpy based discrete thermal modelling framework for particulate systems with phase change materials

From Chemistry Select:

Carbon Soot/n–carboxylic Acids Composites As Form‐stable Phase Change Materials For Thermal Energy Storage

From International Journal of Heat and Mass Transfer:

Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials
High thermal response rate and super low supercooling degree microencapsulated phase change materials (MEPCM) developed by optimizing shell with various nanoparticles

From Applied Thermal Engineering:

Design optimization of the phase change material integrated solar receiver: A numerical parametric study

From Solar Energy Materials and Solar Cells:

Synthesis and characterization of ditetradecyl succinate and dioctadecyl succinate as novel phase change materials for thermal energy storage

From Advanced Materials Interfaces:

Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins

From Journal of Energy Storage:

Heat transfer enhancement of charging and discharging of phase change materials and size optimization of a latent thermal energy storage system for solar cold storage application

Novel PCM microspheres keep new therapy pack flexible when frozen

Ben Welter - Saturday, June 15, 2019

A novel phase change material developed by PureTemp LLC of Minneapolis is the key component of a new flexible therapy pack introduced at the American College of Sports Medicine conference in Orlando, Fla., last month.

Glacier Tek therapy packThe flexible PCM microspheres have a melt point of 18 degrees C and remain pliable when frozen. The flexible GlacierPacks, developed by Glacier Tek LLC of Minneapolis, are designed to provide targeted cooling relief for bruises, muscle strains, headaches and more. The patent-pending packs can be recharged in ice water in about an hour, hold their target temperature of 18 C for more than two hours and can be reused indefinitely.

The packs can be applied directly to skin without damaging tissue or causing discomfort. They can be used safely and effectively for longer periods than traditional ice packs or cold water immersion (CWI) treatments.

In research led by Dr. Malachy P. McHugh and Susan Y. Kwiecien of the Nicholas Institute of Sports Medicine and Athletic Trauma in New York, packs filled with PureTemp's biobased phase change material have been shown to provide a practical way to deliver prolonged post-exercise cooling and thereby accelerate muscle recovery.

A 2019 study, "Accelerated Recovery of Muscle Function in Baseball Pitchers Using Post-Game Phase Change Material Cooling," set out to examine the effectiveness of post-game PCM cooling on strength recovery in pitchers. Based on prior research (Kwiecien et al 2018 and Clifford et al 2018), it was hypothesized that PCM cooling would accelerate recovery. The flexible cooling packs were applied to the elbows and forearms of college pitchers after each had thrown 45 pitches. Pitchers in a control group received no PCM cooling treatment. The strength, soreness and creatine kinase levels of the athletes were then measured to gauge the effectiveness of the PCM cooling. CK is an enzyme released into the blood at elevated levels when there is muscle damage.

The researchers concluded that prolonged PCM cooling accelerated recovery of strength but did not affect soreness or CK levels. "The effect of PCM cooling of the medial elbow and forearm on grip strength recovery is very encouraging considering the role the wrist flexors play in dynamic stability of the elbow," the researchers wrote. 

"Can you believe it? A PCM that remains flexible when fully charged!" said RoxAnne Best, president of PureTemp and Glacier Tek. "I am really proud of our team for their commitment to bringing this technology to market. The consumer application possibilities are endless."

The therapy packs are available on Amazon and on the Glacier Tek website. A set of six packs retails for $229. Contact Glacier Tek to inquire about samples, volume discounts and custom configurations.

Croda adds 2 biobased phase change materials to its lineup

Ben Welter - Friday, May 17, 2019

Marco AuerbachCroda International Plc introduced two new biobased phase change materials, CrodaTherm 32 and CrodaTherm 37, in March. The British specialty chemicals maker developed the products at its PCM lab in Gouda, Netherlands. Marco Auerbach, technology development manager, said development work began about three years ago. He discussed the project in an email interview.

Q: What prompted Croda to create these PCMs -- customer requests, anticipated demand based on market analysis or a combination of factors?

A: "A combination of factors. Market demand was picked up by various means and also verified by customers, which prompted us at one point to start the development."

Q: What was your role in development of these PCMs?

A: "I am leading the technical development of PCMs within Croda. Therefore my task was to put a team together to find the right chemistry for the best possible technical product properties. Mainly meaning high latent heat, narrow melting and crystallization points and high cycle stability."

Q: Did the team surmount any unexpected challenges, technical or otherwise? 

A: "As with most developments, our project team also encountered challenges and set-backs. We had a few options to choose from, each with their own pros and cons. One challenge that is and will be taking more effort and time in future are chemicals registrations in various countries, but also raw material availability and pricing can have an impact."

Q: What specs can you share on each of the products, such as composition, peak melt point and latent heat storage capacity?

A: "For each launched PCM we have Product Data Sheets (PDS) available, so we also issued these for CrodaTherm 32 and CrodaTherm 37. They can be found on our website,  www.crodatherm.com. CrodaTherm 32 has a melting temperature of 32°C and crystallizes at 29.5°C. Latent heat is 190 kJ/kg. For CrodaTherm 37 melting takes place at 36.8°C, crystallization at 35°C and latent heat is 203 kJ/kg, measured by DSC."

Q: Do the new products have any properties, such as latent heat storage capacity or material compatibility, that set them apart from competing products?

A: "It is important to define which competing products or technologies one compares our products with, but in general our PCMs are produced from renewable resources and are also biodegradable. They are non-corrosive to metals and have long-term stability. Another big advantage is the very much lower evaporation and higher flash points compared to the current paraffin industry standards."

Q: What applications are suited to each of the two PCMs?

A: "We do not define the applications our products can be used for, but we have seen most interest in personal cooling and heating applications, as well as temperature-controlled shipments. We are still regularly surprised where and how customers sometimes want to use our CrodaTherm PCMs."

Q: In what formats are the two PCMs available -- bulk, macroencapsulated, microencapsulated?

A: "Both CrodaTherms are available in IBCs and drums. We go down in size to about 16 kg pails as the lowest pack size, but on request other options are possible. Croda does not offer macro encapsulation as we see ourselves as PCM suppliers, not wanting to compete with our customers at the user level. We feel that our customers and partners are better equipped to do this from a technical and customer support point of view. Croda does give advice on materials compatibility and connect our customers with our partners for macro encapsulation though. We do offer micro encapsulated CrodaTherm and also plan to offer CrodaTherm 32 in micro encapsulated form. If there is interest, we will also consider to micro encapsulate CrodaTherm 37."

Q: In a LinkedIn post this month, Croda announced: "All our CrodaTherm materials are USDA certified bio based products." Croda lists 14 CrodaTherm materials on its site; I see only 13 CrodaTherm products listed on biopreferred.gov. Missing from the USDA list is CrodaTherm 9.5. Has that product been certified yet?

A: "CrodaTherm 9.5 is also a product that only has been launched quite recently. We target to have all our products on the USDA bio-preferred list and I am confident CrodaTherm 9.5 will be added to it as well, but all things take time. We expect this registration can be added to the list shortly."

Q: What do you enjoy most about your job?

A: "The development of new products and the joy when customers actually like the product and are buying it. At that point all the puzzle pieces come together and you know that the hard work is paying off. I am particularly pleased with our CrodaTherm PCMs because they do not only help to improve/protect the environment while in use (especially for building cooling/heating applications), but they are also made from renewable raw materials and are bio-degradable. The environment is important to me and as a developer I am really happy I can have a contribution in a sustainable future."

Research roundup: High-conductivity nanomaterials; paper board packaging; battery thermal management; more

Ben Welter - Thursday, May 16, 2019

From Heat and Mass Transfer:

Experimental and numerical analysis of composite latent heat storage in cooling systems for power electronics

From Journal of Sol-Gel Science and Technology:

A robust, flexible superhydrophobic sheet fabricated by in situ growth of micro-nano-SiO2 particles from cured silicone rubber

From Journal of Thermal Analysis and Calorimetry:

High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems

From Building Simulation:

Optimization and sensitivity analysis of design parameters for a ventilation system using phase change materials

From Journal of Packaging Technology and Research:

Thermal Analysis of Paper Board Packaging with Phase Change Material: A Numerical Study

From Energy Storage:

Thermal performance of battery thermal management system using composite matrix coupled with mini‐channel

From Phase Transitions:

A study on preparation and properties of carbon materials/myristic acid composite phase change thermal energy storage materials

From ACS Applied Materials & Interfaces:

Melamine Foam Supported Form-stable Phase Change Materials with Simultaneous Thermal Energy Storage and Shape Memory Property for Thermal Management of Electronic Devices

From International Conference on Thermal Engineering:

Performance Enhancement of Unitary and Packaged Air Conditioners With Phase Change Material
Performance Comparison of Different Phase Change Materials For Solar Cooking During off Sun Sunshine Hours
A Review on Enhancement of Thermophysical Properties of Paraffin Wax PCM With Nanomaterials
Nano-Enhanced PCMs for Low Temperature Thermal Energy Storage Systems and Passive Conditioning Applications

From Chemistry Select:

Designing Coconut Oil Encapsulated Poly(stearyl methacrylate‐co‐hydroxylethyl metacrylate) Based Microcapsule for Phase Change Materials

From Evolution in Polymer Technology Journal:

Enhancement of Thermo-Regulating Textile Materials Using Phase Change Material

From Materials Research Express:

Improved thermal characteristics of Ag nanoparticles dispersed myristic acid as composite for low temperature thermal energy storage

From Applied Energy:

On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context

From Solar Energy Materials and Solar Cells:

Thermal stability enhancement of d-mannitol for latent heat storage applications

PCM briefing: Cold chain veteran joins Phase Change Energy Solutions; Outlast showcases new nylon filament yarn

Ben Welter - Friday, May 10, 2019

Bruce TruesdaleBruce Truesdale has joined Phase Change Energy Solutions of Asheboro, N.C., as director of business development - cold chain. He was formerly senior supply chain consultant at Verta Life Sciences and director of health care at Protek Pharma Worldwide. He declined an interview request, but his new job title suggests that PCES, whose product line now focuses on HVAC, building and thermal energy storage, has an interest in the temperature-controlled packaging market. Earlier this year, PCES announced an investment by Pegasus Capital Advisors, Emerald Technology Ventures and Third Prime, an early-stage venture fund and prior investor. The company said it would use the proceeds to fund the continued development of its thermal storage products and expand its operations globally.

Chalmers University of Technology of Sweden has an opening for a postdoctoral researcher in thermal energy storage for building applications. The research group Building Physics is working "to find out how novel TES with phase change materials (PCM) could complement the existing district heating and cooling networks and co-operate with other peak shaving techniques (water accumulator tanks, ground heat storage pumps, etc.) through smart thermal grids." The application deadline is June 9.

Outlast will showcase its new nylon filament yarn at the Techtextil trade show in Frankfurt, Germany, next week. "The PCMs optimized for this specific application," Outlast says, "are included directly inside the polyamide fibers." Potential applications include next-to-skin products such as undergarments, shapewear, sportswear and hosiery. The company says it now sources the majority of PCMs used in its products from renewable instead of synthetic raw materials.

PCM coolerA PCM coating designed to absorb heat from rockets is among the dozens of NASA spinoffs listed in the latest issue of Spinoff, an annual publication that has been documenting space agency spinoffs since 1976. In the early 2000s, Raj Kaul, a materials scientist at Marshall Space Flight Center, began researching a way to use PCM to keep the outside of spacecraft at a safe temperature. An entrepreneur eventually snapped up the patent for the coating Kaul developed and is working on a number of products based on the technology, including aircraft paint, pipe heat traps and an iceless cooler, shown at right. 

• The U.S. Department of Energy this week announced $89 million in funding for "innovative, advanced manufacturing research and development projects." "Innovations for the Manufacture of Advanced Materials," one of three areas to receive funding, includes phase change storage materials for heating and cooling applications. The department anticipates making up to 55 awards for up to three years. Concept papers are due on June 20.