Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Patent application: Removable sticker for cooling hot spots in cellular phones

Ben Welter - Saturday, March 23, 2019

U.S. patent application 20190086158 (inventor James Hirschfeld, Delray Beach, Fla.):

"A removable cooling sticker secured to the surface of a cellular telephone for extraction of heat from the cellular telephone. The cooling sticker is thin and sized to be conveniently carried. [Using phase change material as the active heat extraction material,] the cooling sticker is adhered to the cellular telephone at its hot spot for maximum efficiency. An optional feature employs thermal strips that indicate when the electronic device is exceeding a temperature threshold sticker."

http://www.freepatentsonline.com/20190086158.pdf

Research roundup: Poly (methyl methacrylate) shell; calcium carbonate shell; macroscopic composite cement mortars; more

Ben Welter - Tuesday, March 19, 2019

From Energy Procedia:

Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage
Supercooling study of erythritol/EG composite phase change materials
Thermal performance of pouch Lithium-ion battery module cooled by phase change materials
Active cooling based battery thermal management using composite phase change materials
Investigation on Thermal Performance of an Integrated Phase Change Material Blind System for Double Skin Facade Buildings
Experimental study on preparation of a novel foamed cement with paraffin/ expanded graphite composite phase change thermal energy storage material

From Colloids and Surfaces A: Physicochemical and Engineering Aspects:

Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage

From Journal of Materials Chemistry A:

A novel shape-stabilization strategy for phase change thermal energy storage

From Journal of Molecular Liquids:

Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects

From Energy and Buildings:

Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: lab-scale characterization

From Applied Sciences:

Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material

From Solar Energy:

Modelling and performance analysis of a new concept of integral collector storage (ICS) with phase change material

Research roundup: PCM wallboard; cement mortars; electric load shifting; red-mud geopolymer composite; more

Ben Welter - Wednesday, February 27, 2019

From Renewable Energy:

Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control

From Cement and Concrete Research:

Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars

From Journal of Molecular Liquids:

Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials

From Energy and Buildings:

Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: Experimental design and response surface approach

From International Journal of Photoenergy:

Experimental Study on the Performance of a Phase Change Slurry-Based Heat Pipe Solar Photovoltaic/Thermal Cogeneration System

From Solar Energy:

Effects of sodium nitrate concentration on thermophysical properties of solar salts and on the thermal energy storage cost
Red-mud geopolymer composite encapsulated phase change material for thermal comfort in built-sector [pdf]

From Energies:

A Novel Encapsulation Method for Phase Change Materials with a AgBr Shell as a Thermal Energy Storage Material

From Advanced Composites and Hybrid Materials:

Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites

From International Journal of Refrigeration:

Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage

From Solar Energy Materials and Solar Cells:

Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage
Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review

From Buildings:

Thermal Performance of Hollow-Core Slab Ventilation System with Macro-Encapsulated Phase-Change Materials in Supply Air Duct

From International Journal of Heat and Mass Transfer:

Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence

From Journal of the Electrochemical Society:

Effect of High Temperature Circumstance on Lithium-Ion Battery and the Application of Phase Change Material

From Energy:

High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries

PCM mats helped lift Virginia Tech to first place in Solar Decathlon

Ben Welter - Monday, February 18, 2019

FutureHAUS, front elevation

The Virginia Tech team that won first place in the 2018 Solar Decathlon Middle East credits a good share of its success to the deft use of phase change material donated by Insolcorp LLC of New London, N.C.

FutureHAUS, the lone U.S. entry, topped 13 other finalists and more than 60 total entrants in the competition organized by the U.S. Department of Energy and the United Arab Emirates’ Dubai Electricity & Water Authority. Australia's University of Wollongong finished second. The finals took place in November in the desert heat of Dubai.

Insolcorp donated 400 square feet of two types of Infinite R PCM mats. Both are salt hydrates, one with a melt point of 21 degrees Celsius, the other a melt point of 22 degrees C. The phase change material acts as a thermal battery, absorbing and releasing thermal energy as it solidifies and melts.

The Virginia Tech team deployed the mats in the plenum of its 900-square-foot solar-powered house. The PCM allowed the team to take advantage of a rule that limited the use of solar energy to 8kw at any one time, with one exception: Unlimited use of solar energy for air conditioning was allowed during daily inspection periods to assure visitor comfort. The PCM mats, solidified during those periods, helped keep the house comfortable at other times. That helped the FutureHAUS achieve the highest score in net energy use, a key metric in the competition.

Joseph Wheeler, AIA"Every team struggled with the 8kw limit," said Joseph Wheeler, right, lead faculty on FutureHAUS and co-director of Virginia Tech's Center for Design Research. "Typically, during peak energy, you would be generating lots and lots of power, which you could easily charge your batteries with, which you could easily run all your tasks, and you could feed the grid, and build up quite a bit of surplus so that you would remain energy positive throughout the two weeks of competition.

"But, since they limited inverter use at any one time to 8kw, it really put a limit to what our energy budget was. We saw phase change as batteries. A massive ton of batteries. ... It's more of a strategy for a competition than it is for a realized situation. But in a realized situation, we know the value of the PCM. Heat energy, cost of power being cheaper at night than during the day where you can charge your systems and load shift. Practically, PCMs make a lot of sense. And we wanted to have the PCMs in this house for practical reasons, not just for competition reasons. ...

"In simple terms, we eased the demand for the HVAC every afternoon. It was the hottest time of the day and it was also the time when we were getting less power from the solar panels because the sun was moving down. It was a critical time because we knew that once the sun went down, we had to survive on battery. And we had a limit. They limited every house to 15kw of battery."

FutureHAUS, kitchenThe FutureHAUS team finished in the top three in eight of the competition's 10 categories: first place in Architecture, House Functioning and Sustainable Transportation; second place in Sustainability and Innovation; and third place in Engineering/Construction, Energy Efficiency and Comfort Conditions.

The FutureHAUS entry was a two-year university-wide effort. More than 100 Virginia Tech students helped design and build the structure, with help from faculty members in architecture, urban studies, science, engineering and other departments.

The house consists of 18 modular  "cartridges" built inside a Virginia Tech research facility. It was first assembled on campus in Blacksburg, Va., last summer. After testing, it was disassembled, shipped to Dubai and then reassembled at the competition site in just two days. It has since been shipped back to Blacksburg, where it will undergo testing to measure its various energy-saving components.

"We now have a system in place where we can collect data and can truly test the performance," Wheeler said. "We know the PCM worked for us during the competition because we did have some temperature sensors in the ceiling. And so we were able to prove that we were reaching the pre-state when those PCMs were being charged. But we really want to collect a lot more data and look at it in real-world situations."

Patent application: Battery pack containing phase change material

Ben Welter - Thursday, February 14, 2019

U.S. patent application 20190051955 (applicant Consortium de Recherche BRP / Universite de Sherbrooke, Canada):

"A battery pack for a vehicle is presented. The battery pack comprises a plurality of bricks, each brick of the plurality of bricks comprising a phase change material block, a side of the phase change material block defining a plurality of channels, and a plurality of battery cells, each battery cell being disposed at least in part in the phase change material block; and at least one connector for electrically connecting a first one of the plurality of bricks to a second one of the plurality of bricks, the at least one connector being disposed at least partially in one of the plurality of channels."

http://www.freepatentsonline.com/20190051955.pdf

Research roundup: Hydrophobic lauric acid; paraffin in heat exchanger; EnergyPlus vs. IES; more

Ben Welter - Thursday, January 10, 2019

From Journal of Energy Storage:

Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage

From Applied Thermal Engineering:

Development of paraffin wax as phase change material based latent heat storage in heat exchanger

From Renewable Energy:

Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage

From Journal of Building Engineering:

Comparison of EnergyPlus and IES to model a complex university building using three scenarios: Free-floating, ideal air load system, and detailed

From 4th International Conference on Renewable Energies for Developing Countries :

Phase Change Materials in a Domestic Solar Hot Water Storage Tank of the Lebanese Market
Numerical and experimental investigations of a PCM integrated solar chimney
Integrating a High Solar Combi-Plus System using PCM Storage in a Smart Network: KSA Case Study

From International Journal of Advanced Research In Applied Sciences, Engineering and Technology:

Solar Cooker with Heat Storage System: A Review [pdf]

From Energy and Buildings:


From Solar Energy Materials and Solar Cells:

Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

From Construction and Building Materials:

Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements

From Energy Conversion and Management:

Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials
Experimental investigation on cylindrically macro-encapsulated latent heat storage for space heating applications

From International Communications in Heat and Mass Transfer:

Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system
Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section

From Journal of Cleaner Production:

PCM briefing: Isomer can store energy for up to 18 years; concept combines pumped storage and heat storage using water as a medium

Ben Welter - Friday, November 02, 2018

• Researchers at Chalmers University of Technology and Universidad de La Rioja have created a system capable of storing solar energy for extended periods. The Molecular Solar Thermal Energy Storage system uses a molecular photo switch made from carbon, hydrogen and nitrogen. Sunlight turns the molecule into an energy-rich isomer. The isomer can be stored in a liquid form to be used for heating at night or in winter. “The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for,” said Kasper Moth-Poulsen, professor at Chalmers.

• New research at California's Lawrence Livermore National Laboratory reveals how an unusual type of ice known as Ice VII can form at speeds over 1,000 miles per hour. "This ice type was only discovered occurring naturally in March, trapped inside diamonds deep underground," reports Science Alert, "and this latest study looks in detail at how exactly it takes shape – apparently in a way that's completely different to how water usually freezes into ice."

• A research team at the Graz University of Technology, Austria, has combined the advantages of pumped storage technology and heat storage using water as a medium in a hybrid storage concept called "hot-water pumped storage hydropower." The new system stores and supplies electricity, heat and cooling energy. 

• The U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) has openings for program directors, tech-to-market advisors and two-year fellowships.  

Registration is open for the 2019 ARPA-E Energy Innovation Summit, to be held in Denver, Colo., July 8-10. Now in its 10th year, the annual conference and technology showcase "brings together experts from different technical disciplines and professional communities to think about America’s energy challenges in new and innovative ways."

A full agenda is available for the World Bio Markets conference, to be held in Amsterdam, Netherlands, April 1-3. Speakers include Rolf Hogan, executive director, Roundtable on Sustainable Biomaterials; Chris Sayner, vice president customer alliances, corporate sustainability, Croda; and Davide Bragholi, project manager, environmental innovations, Tetra Pak. 

• Registration is open for the inaugural Thermal Materials Summit to be held in Los Angeles on May 2. This technical forum will explore the latest advancements in thermal interface materials for professionals working in aerospace, automotive, telecom, batteries and other fields. Presentation proposals are due by Dec. 7.

Ecozen Solutions of India is one of five finalists in Rabobank’s inaugural Food Loss Challenge Asia. The competition aims to identify innovative ag-tech start-ups working to solve farm-to-market food loss problems. The finalists will present their solutions to a panel of judges at Rabobank’s annual Asia Food & Agribusiness advisory board meeting in Singapore later this month. Ecozen makes portable solar cold rooms for small farms, using a thermal storage unit that can store power for more than 36 hours in case of cloudy or rainy weather.

PCM briefing: 'Array' radiator featured at Dutch Design Week; DLR's Sundharam among speakers at green tech conference

Ben Welter - Monday, October 29, 2018

Array radiator

• What happens when designers and scientists collaborate on new materials? Ten teams set out to answer that question over a six-month period. The results were on display at Dutch Design Week 2018 earlier this month. A metallic radiator filled with phase change materials and nanowires was one of 10 projects featured in the "What Matter_s" exhibition in Eindhoven. The "Array" radiator, the work of furniture designer Amy Wang, architect Tim Söderström and two nanotechnologists, Professor Magnus Borgström and Dr. Vilgailè Dagytè, is designed to absorb and disperse heat in reaction to changing ambient temperatures.

Prem Sundharam, global sustainability leader for DLR Group, will be among the speakers at this week's California Green Technology Schools and Community College Conference in Pasadena. "Looking forward to discussing about Zero-Net Energy Buildings, California's Duck-Curve and the application of Phase Change Materials (PCM) as an effective solution," he wrote on LinkedIn last week. "Bonus: Also sharing how to integrate innovative energy technology (PCM) into school curriculum and have students be active participants in this cutting-edge research!"  

EnergyNest thermal battery EnergyNest of Norway is partnering with the Italian utility Enel to analyze the potential for integrating industrial-scale thermal batteries into Enel’s thermal power plants. EnergyNest's battery, right, consists of steel cassettes with pipes encased in Heatcrete, a special type of concrete developed in partnership with HeidelbergCement.

• New from QY Research: "Global (United States, European Union and China) Salt Hydrate Market Research Report 2018-2025"

• As the solar industry has grown, the market has been flooded with cheaply made Chinese panels. The panels are wearing out in as little as five years, the Verge reports, and recycling isn’t economically viable right now. “It’s going to be a major problem,” said Mary Hutzler, a senior fellow at the Institute for Energy Research.  

Vertellus, the specialty chemicals company based in Indianapolis, has named John Van Hulle its new chief executive officer. He previously served as president of global color and additives for Ohio-based PolyOne, and CEO of Wisconsin-based chemical supplier ChemDesign

PureTemp LLC is moving its Minnesota administrative office from Plymouth to Minneapolis, effective Oct. 31. The new address: 4232 Park Glen Road, Minneapolis, MN 55416.

• SolarReserve has been selected to receive a $2 million award from the U.S. Department of Energy's Solar Energy Technologies Office to advance concentrating concentrating solar power research and development. SolarReserve's CSP technology uses molten salt as a heat transfer fluid and thermal energy storage medium. 

Patent application: Battery module and use of a propagation protection element

Ben Welter - Monday, October 29, 2018

U.S. patent application 20180309177 (applicant Robert Bosch GmbH, Stuttgart, Germany):

"A battery module comprising at least one battery cell, wherein the battery module further comprises a propagation protection element which is connected in a thermally conductive manner to the battery cell and which is designed in such a way that, when a specific value for a temperature of the at least one battery cell is exceeded, an endothermic process which is being executed within the propagation protection element absorbs heat which is given off by the at least one battery cell."

http://www.freepatentsonline.com/20180309177.pdf

Patent application: Flexible phase change material composite for thermal management systems

Ben Welter - Monday, October 22, 2018

U.S. patent application 20180298261 (applicant AllCell Technologies, Chicago, Ill.):

"A thermal management composite, comprising a phase change material within a carbon or graphite matrix. The matrix is coated with a polymer coating to improve flexibility. The matrix can be a molded carbon or graphite material or a carbon or graphite cloth."

http://www.freepatentsonline.com/20180298261.pdf