Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

Microtek joins RAL Quality Association PCM

Ben Welter - Friday, September 29, 2017

Tim Riazzi, Microtek Labs presidentMicrotek Laboratories, which purchased BASF's Micronal line of microencapsulated phase change material earlier this year, has joined the RAL Quality Association PCM, effective Jan. 1, 2018. 

The Dayton, Ohio, company will assume BASF's membership in the association, which was established in 2004 to develop standards for the phase change material industry. Microtek plans to attend the association's next meeting, set for Oct. 17 in Düsseldorf, Germany.

"Microtek is pleased to become a member of the RAL Quality Association," said Tim Riazzi, Microtek president. "The Association has accomplished a great deal in bringing PCM technology into alignment with various markets. We would also like to express our appreciation for all BASF has done in the past to contribute to the association and help make it what it is today."

Research roundup: Graphene oxide; PV/PCM integration in glazed building; porous plaster board; more

Ben Welter - Friday, September 29, 2017

Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage [Solar Energy Materials and Solar Cells]

PV-PCM integration in glazed building. Co-simulation and genetic optimization study [Building and Environment]

Performance study on different location of double layers SSPCM wallboard in office building [Energy and Buildings]

Facile Preparation of Porous Plaster Board Containing Phase Change Capsules Using Gel Template [Energy and Buildings]

Preparation and properties of capric-stearic acid/White Carbon Black composite for thermal storage in building envelope [Energy and Buildings]

Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production [International Journal of Hydrogen Energy]

Research roundup: Silk hydrogel as packaging material; interfacial polymerization; ecodesign of cladding system with PCM; more

Ben Welter - Wednesday, September 27, 2017

Silk hydrogel illustration

Temperature buffering capacity of silk hydrogel: A useful packaging material [Materials Letters]

Preparation and Characterization of Cross-linked Polyurethane Shell Microencapsulated Phase Change Materials by Interfacial Polymerization [Materials Letters]

Environmental and spatial assessment for the ecodesign of a cladding system with embedded Phase Change Materials [Energy and Buildings]

Novel shapeable phase change material (PCM) composites for thermal energy storage (TES) applications [Solar Energy Materials and Solar Cells]

Novel approaches and recent developments on potential applications of phase change materials in solar energy [Renewable and Sustainable Energy Reviews]

Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials [International Journal of Heat and Mass Transfer]

Natural aging of shape stabilized phase change materials based on paraffin wax [Polymer Testing]

Multiphase transport phenomena in composite phase change materials for thermal energy storage [13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics]

Numerical investigation of cylindrical and spherical encapsulated thermal energy storage system with phase change materials [Transylvania Review]

Temperature Dependence of the Enthalpy of Alkanes and Related Phase Change Materials [Enthalpy and Internal Energy: Liquids, Solutions and Vapours]

Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging [Energy Conversion and Management]

PCM briefing: Can a cat be both a solid and a liquid?

Ben Welter - Monday, September 25, 2017

• Alas, no chemistry prize was handed out at the Ig Noble awards ceremony at Harvard University earlier this month. The annual "Igs," first awarded in 1991, are designed to recognize research efforts that "first make people laugh, and then make them think." This year's physics prize was awarded to Marc-Antoine Fardin, a physicist at Paris Diderot University, for using fluid dynamics to probe the question "Can a Cat Be Both a Solid and a Liquid?" His conclusion: Yes.

• The World Wildlife Fund has partnered with the American Chemistry Council, Recycling PartnershipOcean Conservancy, Target, Nestle and other organizations to find opportunity and economic value in expanding the availability and use of secondary material. Members of the initiative, known as the Cascading Materials Vision, introduced the concept of "cascading value" in two sessions at this week's Verge Conference in Santa Clara, Calif.

• New from COMSOL: Modeling a novel PCM-enhanced plaster with numerical simulation 

• New from QY Research: "2017 Market Research Report on Global Energy Storage Devices Industry"

Patent application: Breathable product for protective mass transportation and cold chain applications

Ben Welter - Monday, September 25, 2017

U.S. patent application 20170266609 (applicant E.I. DuPont De Nemours and Co., Wilmington, Del.):

"The present invention concerns a breathable product for protective mass transportation and cold chain applications, in particular a reflective sheet for covering temperature sensitive products the reflective sheet having at least a first layer made of a highly reflective moisture vapor permeable substrate having an outer side and an inner side, wherein said inner side comprises in addition at least a metal layer deposited by a PVD process to provide a thermal insulation through high reflection low convection while providing controlled moisture vapor permeability. ... The honeycomb structural element provides some additional thermal insulation because the spaces inside are filled with air, but these spaces may also be filled with a phase change material such as a wax, which will absorb and liberate additional heat during melting and freezing when the temperature distribution within the layers is favorable and the presence of the phase change material is not detrimental to the protected goods."

http://www.freepatentsonline.com/20170266609.pdf

Patent application: Air-conditioning system for a machine

Ben Welter - Monday, September 25, 2017

U.S. patent application 20170267066 (applicant Caterpillar Inc., Peoria, Ill.):

"An air-conditioning system including a primary circuit and a secondary circuit is provided. The primary circuit includes a flow of refrigerant, an evaporator and a chiller configured to exchange heat between a coolant and the refrigerant. The secondary circuit includes a heat exchanger in fluid communication with the chiller to receive the coolant. The heat exchanger includes a phase change material in heat exchange relationship with the coolant, such that the coolant exchanges heat with the phase change material to store thermal energy in the phase change material. The air-conditioning system is implemented in a machine in which during an idle-off state, the stored energy in the heat exchanger is discharged to provide an air-conditioning effect."

http://www.freepatentsonline.com/20170267066.pdf

Paraffin-enhanced concrete shows promise in melting ice, snow

Ben Welter - Monday, September 25, 2017

PCM LWA video

Dr. Yaghoob Farnam has spent four years combining concrete and phase change material in various ways in a quest to develop a durable paving material that can melt ice and snow. 

Farnam, an assistant professor in Drexel University’s College of Engineering, has previously measured the effectiveness of paraffin oil and methyl laurate, materials that have relatively high heat storage capacity (about 130 to 170 joules per gram) and a suitable phase transformation temperature (about 2 to 3 degrees Celsius). Both showed promise when contained in plastic tubes embedded in concrete. But the paraffin oil proved to be far more effective than methyl laurate in concrete made of lightweight aggregate infused with the PCMs. Chemical reactions between the methyl laurate and materials in the cement rendered that PCM ineffective and also appeared to cause cracks in the concrete.

In his latest paper, published in Cement and Concrete Composites, Farnam's research team focused on paraffin oil. The team used concrete slabs to compare two methods of deploying the PCM. Steel pipes filled with paraffin and sealed with PVC caps were embedded in one slab. A second slab was made of porous lightweight aggregate infused with paraffin. A third slab, containing no paraffin, served as a reference point. Each slab was sealed in an insulated container and then covered with about 5 inches of shaved ice.

DrexelNow describes what happened in two tests:

"With temperatures inside the boxes held between 35-44 degrees Fahrenheit, both of the paraffin-treated slabs were able to completely melt the snow within the first 25 hours of testing, while the snow on the reference sample remained frozen. The slab with the paraffin-filled tubes melted the snow slightly faster than the one composed of paraffin-treated aggregate. Farnam suggests that this is because the paraffin inside the tubes is able to solidify more quickly — thus releasing its energy — because of the regular diameter of the pipes. While the diameter of the pores of the aggregate vary in size.

"But in the group’s second experiment, in which the ambient air temperature in the box was lowered to freezing before the snow was added, the paraffin-treated aggregate was more effective than the embedded pipes. This is because the capillary pore pressure delayed the freezing of the paraffin, thus allowing it to release its heat energy over a longer period of time." 

The research is of particular importance to the airline industry, which has a keen interest in finding cost-effective and environmentally friendly ways to clear runways of ice and snow. The Federal Aviation Administration has supported Farnam's work with nearly $500,000 in grants through its PEGASAS program.

Farnam says additional research is needed to better understand how the addition of PCM affects pavement durability, skid resistance and long-term stability.  

http://drexel.edu/now/archive/2017/September/self-melting-concrete-roads/

North American PCM group to hold inaugural meeting Oct. 5

Ben Welter - Monday, September 25, 2017

In December 2016, representatives of several U.S.-based PCM makers attending a thermal mass workshop in Florida agreed to work together to form a PCM manufacturers association, with a goal of promoting the development and use of phase change material in North America. 

Since then, many of the details necessary to establish this organization have been worked out: Bylaws have been drafted, a mission statement written and a list of potential members compiled. 

The group has now set a date for its inaugural meeting. More than three dozen people representing PCM manufacturers, research organizations and government agencies have been invited to the Fraunhofer Center for Sustainable Energy Systems in Boston on Oct. 5 to celebrate the creation of the Phase Change Materials Industry Association.

The agenda includes presentation of the mission statement and bylaws, election of officers, and discussion of membership fees and next steps. For more information about the new organization, please contact Jan Kosny, director of Building Enclosures and Materials at Fraunhofer CSE.

Research roundup: Rubber sealing materials; pork fat as novel PCM; thermal inertia of buildings; more

Ben Welter - Wednesday, September 20, 2017

Feasibility of Using Microencapsulated Phase Change Materials as Filler for Improving Low Temperature Performance of Rubber Sealing Materials [Soft Matter]

Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study [Energy Conversion and Management]

Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics [Journal of Cleaner Production]

Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity [Solar Energy Materials and Solar Cells]

Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement [Solar Energy Materials and Solar Cells]

Solar desalination using solar still enhanced by external solar collector and PCM [Applied Thermal Engineering]

Using Thermal Inertia of Buildings with Phase Change Material for Demand Response [Energy Procedia]

Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage [Energy Procedia]

Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials [International Journal of Heat and Mass Transfer]

PCM briefing: Three molten salt projects projects move forward in U.S., Germany

Ben Welter - Tuesday, September 19, 2017

Terrafore salt encapsulation• The U.S. Department of Energy has released funding to the Argonne National Laboratory for a scaled-up round of independent testing of Terrafore Technologiesencapsulated thermal energy storage in phase change salts. The materials, shown at right, are designed to operate in temperatures to greater than 800° C in a single tank that acts as both storage and heat exchanger.

• The Department of Energy has invited Terrestrial Energy USA to submit the second part of its application for a federal loan guarantee to support the licensing and construction of its Integrated Molten Salt Reactor

DLR has fired up the TESIS thermal storage facility in Cologne, Germany. One hundred tons of molten salt is alternately heated and cooled from 250 to 560 degrees Celsius in the test facility, which is designed to allow industrial-scale testing of temporary storage methods for renewable energy and waste heat. 

• Va-Q-tec AG is reporting a strong increase in its service business in the first half of 2017, up 54 percent to 8.8 million euros. The company, based in Würzburg, Germany, develops, manufactures and sells vacuum insulation panels and phase change materials. 

• New from Zion Market Research: "Global thermal storage market is expected to reach USD 5.7 billion in 2022, growing at a CAGR of 10.7% between 2017 and 2022"

Advanced combat clothing featuring "four-way stretch phase-change material" was on display last week at the annual Defense and Security Equipment International show in London. Royal College of Art researchers and designers collaborated with the Ministry of Defense on the prototypes, which are designed to be easy to run in and comfortable to wear.