Phase Change Matters RSS

 

The award-winning Phase Change Matters blog tracks the latest news and research on phase change materials and thermal energy storage. E-mail tips and comments to Ben Welter, communications director at Entropy Solutions. Follow the blog on Twitter at @PureTemp. Subscribe to the weekly PCM newsletter. Or join the discussion on LinkedIn.

RECENT POSTS

TAGS

ARCHIVE

PCM briefing: Axiom lowers energy costs at Whole Foods store; EnergyNest has opening for senior engineer

Ben Welter - Monday, February 19, 2018

• Nearly a year ago, a Whole Foods in Los Altos, Calif., connected a thermal battery system made by Axiom Exergy to the store's refrigeration system. Whole Foods pays Axiom a monthly fee for the saltwater-based technology. Axiom says that payment, coupled with a lower monthly power bill, amounts to less than what the grocer was paying its utility before the batteries were installed. 

• Thermal battery maker EnergyNest AS of Norway is looking to hire a senior engineer to work in its main office outside Oslo.  

• The schedule has been posted for the 2018 GlobalChem Conference & Exhibition in Washington, D.C., Feb. 28-March 2. Most of the sessions focus on the Toxic Substances Control Act, the Global Harmonized System of Classification and other regulatory topics. 

Applications are being accepted for the Women and Minorities in Science, Technology, Engineering and Mathematics Fields Grant Program (WAMS). The program supports research and extension projects that will increase participation by rural women and underrepresented minorities from rural areas in science, technology, engineering and mathematics.

• CONTISOL, a solar reactor that can run day or night, is being tested by researchers in Germany. The reactor uses concentrated solar power and thermal energy storage.

Registration is still open for the second annual European Chemistry Partnering event, to be held Feb. 23 in Frankfurt, Germany. It's a chance to pitch innovations and connect with investors and decision-makers in the chemical industry.

• U.K.-based Sure Chill Co., whose water-based refrigeration technology is used to keep vaccines cool without the need for grid-based electricity, has been shortlisted for a 2018 St. David Award in Innovation, Science and Technology. 

• The U.S. Federal Energy Regulatory Commission has voted to clear a path for energy storage projects in the capacity, energy and ancillary services markets. Commissioner Cheryl LaFleur noted that newer technologies “like some of the batteries, flywheels, compressed air, new forms of thermal storage, are rapidly gaining commercial viability and scale.”

Ice Energy buys back program to distribute 1,800 commercial ice batteries

Ben Welter - Friday, February 16, 2018

Ice Energy, the California company that partnered with NRG Energy a year ago to install up to 1,800 behind-the-meter ice batteries in commercial buildings in Orange County, has bought back the program. Payment terms were not disclosed. In an e-mail interview, Ice Energy CEO Mike Hopkins explained the strategic shift.

Q: What spurred your decision to buy back the program?

A: NRG was the owner of the program but they decided to divest all their renewables including this project. We bought the project back from NRG last month and are financing it ourselves. We have almost 1800 Ice Bears available but are in discussions with several major property owners who will start taking down large chunks.

Q: The agreement with NRG called for the installation of up to 1,800 Ice Bear 30s, providing a total of up to 25.6 MW of peak storage capacity to Southern California Edison under 20-year power purchase agreements. How long was the NRG program active, and how many Ice Bears were installed?

A: During most of the time NRG owned the program, it was on hold due to regulatory delays. The delays were caused by requests for re-hearings and court appeals unrelated to our program, which was part of a much larger procurement by SCE that included a controversial gas peaker. The program got the regulatory green light last March, but that more or less coincided with NRG’s move out of renewables, which effectively kept the program on hold. As a result, only a few units for the City of Tustin were installed.

Ice Bear 30Q: Can you share performance data on the Ice Bears installed through the NRG agreement?

A: The Ice Bears installed for the City of Tustin have performed like the other 1200 or so units in operation – better than 98% availability which is better than any other storage technology, or grid asset for that matter.

Q: Can you name commercial property owners that participated in the Ice Bear program through NRG?

A: In addition to the City of Tustin who had their Ice Bears installed during NRG’s ownership of the program, the following commercial property owners signed up during NRG’s ownership and will now have their Ice Bears installed by us:

• A global bank
• John Wayne Airport
• Marconi Auto Museum
• Medical Eye Services
• 7 Diamonds

Q: Can you name any of the major property owners you're now in talks with?

A: We're in ongoing discussions and identifying initial target sites with the largest Orange County real estate developers and property management firms.

Q: Will the program change in any significant way under Ice Energy's direction?

A: Yes, under Ice Energy's direction we're able to respond more quickly and tailor our offering to meet individual customer needs. To accelerate adoption, for a limited period of time, Ice Energy is offering new participants free HVAC replacement in addition to free Ice Bears. We are also now able to work more efficiently with our utility partner on this program through our direct interaction. The end result of these changes is more units placed more quickly to more customers.

Q: When will the first units be installed?

javascript:void(0);

A: The first installations under our ownership of the program will be next month which will be the beginning of almost three years of installing Ice Bears under our program. Once installed, the Ice Bears will then provide OC participants 20 years of utility bill savings and reduced greenhouse gas emissions.

Novel thermal resonator draws power from daily temperature swings

Ben Welter - Friday, February 16, 2018

MIT thermal resonator test device

Researchers at the Massachusetts Institute of Technology have developed a system that uses phase change material and graphene to convert daily fluctuations in ambient temperature into electrical power. 

The system, called a thermal resonator, is described in a paper published in the journal Nature Communications.

“We basically invented this concept out of whole cloth,” one of the authors, professor Michael Strano, told MIT News. “We’ve built the first thermal resonator. It’s something that can sit on a desk and generate energy out of what seems like nothing. We are surrounded by temperature fluctuations of all different frequencies all of the time. These are an untapped source of energy.”

MIT News writes:

"The researchers realized that to produce power from temperature cycles, they needed a material that is optimized for a little-recognized characteristic called thermal effusivity — a property that describes how readily the material can draw heat from its surroundings or release it. Thermal effusivity combines the properties of thermal conduction (how rapidly heat can propagate through a material) and thermal capacity (how much heat can be stored in a given volume of material). In most materials, if one of these properties is high, the other tends to be low. Ceramics, for example, have high thermal capacity but low conduction.

"To get around this, the team created a carefully tailored combination of materials. The basic structure is a metal foam, made of copper or nickel, which is then coated with a layer of graphene to provide even greater thermal conductivity. Then, the foam is infused with a kind of wax called octadecane, a phase-change material, which changes between solid and liquid within a particular range of temperatures chosen for a given application.

"A sample of the material made to test the concept showed that, simply in response to a 10-degree-Celsius temperature difference between night and day, the tiny sample of material produced 350 millivolts of potential and 1.3 milliwatts of power — enough to power simple, small environmental sensors or communications systems."

The researchers say the system could be used, for example, to continuously power remote sensing systems for years.

http://news.mit.edu/2018/system-draws-power-daily-temperature-swings-0215

Research roundup: Acrylic PCM microcapsules; paraffin-water nanoemulsion; two-tank molten salt TES; more

Ben Welter - Wednesday, February 14, 2018

Non-linear system identification of a latent heat thermal energy storage system [Applied Thermal Engineering]

Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage [Applied Thermal Engineering]

Preparation of acrylic PCM microcapsules with dual responsivity to temperature and magnetic field changes [European Polymer Journal]

Paraffin wax–water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax [Energy Conversion and Management]

Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage [Journal of Thermal Analysis and Calorimetry]

Efficiency analyses of high temperature thermal energy storage systems of rocks only and rock-PCM capsule combination [Solar Energy]

Thermal performance analysis of PCM wallboards for building application based on numerical simulation [Solar Energy]

Thermal energy storage in district heating: Centralised storage vs. storage in thermal inertia of buildings [Energy Conversion and Management]

Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation [Renewable Energy]

PCM briefing: Croda merger talks reported; RAL PCM members to meet March 1

Ben Welter - Monday, February 12, 2018

• British specialty chemicals maker Croda International Plc has held unsuccessful talks with Ashland Global Holdings Inc. about a possible merger, a source familiar with the matter told Reuters last week.

Croda recently redesigned the CrodaTherm website, www.crodatherm.com. The new site offers improved navigation and searchability, a wider range of potential PCM applications and profiles of the CrodaTherm technical team. Visitors can register to log in and download datasheets and order samples. "We are excited to launch this new website, making it even easier for our customers to find us and the products they need," said Graeme Tweddle, global managing director for energy technologies at Croda.

• Members of the RAL Quality Association PCM, a European-based organization established in 2004 to develop standards for the phase change material industry, will meet in Düsseldorf, Germany, on March 1. On the agenda: Quality and testing specifications; improvements to the association's website; member content on the BUILD UP Web portal; promotion of PCMs in the European Union, Germany, Netherlands and the United States; and registration of RAL quality marks.   

Sonoco ThermoSafe is accepting registrations for the company's first Leading Minds Seminar, to be held June 6-7 in Philadelphia. Co-hosted by ELPRO, the seminar is a chance for pharmaceutical manufacturers, supply chain partners and government representatives to discuss temperature-assurance packaging and data monitoring in a collaborative environment. Day two includes a visit to ThermoSafe's design and testing lab in Montgomeryville, Penn.

Sonoco is No. 90 on Barron's inaugural list of "The 100 Most Sustainable Companies." 

• A "measurement and verification study" of a Viking Cold Solutions TES system installed in a 320-square-foot walk-in freezer at a supermarket in Fremont, Calif., showed an 18 percent net reduction in energy consumption.   

• The deadline is Monday, Feb. 12, to submit a concept paper for ARPA-E's OPEN 2018 competition. Up to $100 million is available for new projects that "transform the way we generate, store and use energy."

DLR Group, which part of a public-private collaboration working to develop PCM-based cooling and heating methods for Agua Fria Canyon View High School, has been named one of Arizona's "40 Companies to Watch" in 2018 by AZRE magazine. 

• Entries are being accepted for Bio-Based World News' 2018 Innovation Awards. The four categories are product of the year, chemical innovation of the year, best use of alternative feedstocks and industry story of the year. The entry deadline is Feb. 23. Winners will be honored March 20 at the World Bio Markets conference in Amsterdam. 

• Nantucket, Mass., has approved the installation of an Ice Bear thermal storage and air-conditioning unit in a building owned by the town. Last summer, Genbright won a $1.5 million grant from the state to install the units in more than 200 Nantucket homes, with the goal of reducing peak energy demand and staving off the need for a third undersea power cable for the island. But some residents voiced skepticism about the technology, prompting the town board to approve the test installation.

• Shippers have found that cocoa butter can be hard to contain on long ocean voyages. There have been reports of the material leaking out of containers as it changes phase, clogging bilges and generally making a mess. The Cargo Incident Notification System, established in 2011 to share information on all cargo-related incidents, has issued guidelines that recommend the material be shipped in refrigerated containers, particularly when passing through hot climate zones. 

Patent application: Storage systems and methods for medicines

Ben Welter - Thursday, February 08, 2018

Medicine container patent drawingU.S. patent application 20180036202 (inventors Sandy and Eric John Wengreen, Sammamish, Wash.):

"In some embodiments, devices to store medicines can include a chamber configured to store a medicine, a thermal bank, and an insulated cover. The thermal bank can be located inside the insulated cover. At least a portion of the chamber can be located inside the thermal bank. The thermal bank can include phase change materials. Storage devices can also include innovative structures that dramatically reduce the volume and weight of the storage devices while still shielding medicines from extreme outdoor environments."

http://www.freepatentsonline.com/20180036202.pdf

Patent application: Heated lacrosse stick shaft

Ben Welter - Thursday, February 08, 2018

Heated lacrosse stick patent drawingU.S. patent application 20180036610 (inventors Samantha Kate Wolfe, Chappaqua, N.Y., Raeshon Lamont McNeil, Charlotte, N.C., and Jeremy Eric Losaw, Charlotte, N.C.):

"A heating apparatus for use with an athletic device having a shaft and a plurality of hand holding locations associated with portions of the shaft. The heating apparatus comprises a removable self-contained module configured to be received within an athletic device shaft and to emit heat to at least two hand-holding locations of the athletic device shaft. The self-contained module comprises a plurality of heating elements configured to emit heat to the at least two hand-holding locations. The self-contained module further comprises a power source connected to supply electrical power to the plurality of heating elements. A user-operable control is coupled to the power source and configured to selectively power on and regulate the heat released from the heating elements."

http://www.freepatentsonline.com/20180036610.pdf

Patent application: PCM compositions and methods of making the same

Ben Welter - Thursday, February 08, 2018

U.S. patent application 20180037788 (applicant Phase Change Energy Solutions, Asheboro, N.C.):

"In one aspect, compositions are described herein. In some embodiments, a composition comprises a phase change material, a hydrophobic sorption material, and a viscosity modifier. In some embodiments, a composition comprises a foam and a latent heat storage material dispersed in the foam, the latent heat storage material comprising a phase change material and a hydrophobic sorption material."

http://www.freepatentsonline.com/20180037788.pdf

Inspired by nature, 'active energy building' takes wing in Liechtenstein

Ben Welter - Thursday, February 08, 2018

Marxer Haus, west side

The Marxer building on a rare sun-splashed January morning in Vaduz.

An “active energy building” bristling with new technology has officially spread its sophisticated wings in Vaduz, Liechtenstein.

The six-year project was directed by Anton Falkeis and his wife, Cornelia Falkeis-Senn, world-renowned architects based in Vienna. Their client, Liechtenstein attorney and banker Peter Marxer, challenged them to design a sustainable apartment building that relies as much as possible on renewable energy.

A team that included energy experts from the Lucerne University of Applied Sciences and Arts was assembled for the complex task. Countless hours of planning, research, design work, computer modeling and prototyping produced a number of innovations used in the 12-unit Marxer building, including:

• An array of 13 photovoltaic panels that rise from the roof and track the sun’s path across the sky, optimizing the collection of solar energy.

• Load-bearing structures that mimic nature in appearance and function.

• “Acoustically active” three-dimensional interior lighting elements that act as sound diffusors and absorbers.

Anton Falkeis and climate wing
Anton Falkeis and one of the PCM-filled climate wings.
• Seven “climate wings” that fold out of the building facade and absorb, store and release thermal energy as needed to keep the interior comfortable.

The computer-controlled solar panels, which measure up to 14 square meters, rise from the roof at sunrise and turn with the sun during the day. When night falls or inclement weather approaches, the panels automatically fold back into the roof. The system is said to collect nearly three times the solar energy of stationary panels.

Anton Falkeis described the project as a “prototype for a decentralized urban energy production system that’s part of a bigger network.”

“We created an energy cluster with the surrounding buildings, some of which are owned by the same client,” he said. “We share the energy generated by our PV trackers embedded in the roof structure first with the cluster. We sell any surplus to the grid. The utility can use the surplus to refill the hydro power plant storage.”

The climate wings contain 1.4 metric tons of Rubitherm PCM enclosed in aluminum tubes.

Climate wing detail
Each climate wing contains rows of PCM-filled aluminum tubes.

Four wings on the building’s western side are dedicated to heating. They are filled with PCM that has a melting point of 31 degrees Celsius. In cold months, these wings open during the day, exposing the PCM to solar radiation that melts the material. Each wing folds back at night and connects to ventilation systems in the adjoining apartments. The tubes release heat as the PCM solidifies, and low-power fans move the warm air throughout the apartments.

Three wings on the eastern side are dedicated to cooling. The PCM in these has a melting point of 21 degrees C. In summer, the wings open at night, allowing cool air to solidify the PCM. Each wing folds back against the building during the day and connects to the adjoining ventilation systems. Indoor air is cooled as it flows past the frozen PCM in the wing.

Climate wing detail
Ducts carry air warmed by PCM into the apartments.
With a surface area of 24 square meters, the western wings are said to generate about 10 percent of heating capacity. The eastern wings, with a surface of 15 square meters, generate around 16 percent of cooling capacity.

How did the team address flammability issues associated with biobased PCM?

“We developed the encapsulation so that no oxygen can come in contact with the PCM,” Falkeis said. “The whole thing was tested to 300 degrees Celsius, heating up, cooling down, heating up. And finally we got permission by the building commission, a Swiss testing certificate, to use it in the building envelope. Swiss testing accreditation is valid all over Europe.”

Aside from patent applications, what’s next for all this ground-breaking technology? 

“We need to reduce complexity and try to produce more standardized building envelope panels or systems that could be part of a regular building system,” Falkeis said. “This is our next step: Reducing the complexity in terms of form.”

He also hopes to spread awareness. "Active energy building" technology was on display at a New York City exhibition that ended in January. The exhibit opens in Los Angeles on March 1; after that, it will be on display in Vienna and Berlin.

Now that the complex project is complete and the first tenants have moved in, the architect says he is "very happy" with the results.

“There’s a lot of architectural and technological detailing,” he said. “There are more than 800 drawings just on detail. It’s very precise. It’s very well done. Very high standards. It’s really crazy how finally everything came out like we planned it.  It was six years of hard work, being on site, checking everything. …  It was a sort of never-ending ongoing research project. It was really exciting to be part of this.”

Marxer Haus, east side

The east side of Marxer building faces a small park, a biking trail and a creek.

Research roundup: Heat transfer model based on energy asymmetry; smart concretes; traction transient cooling; more

Ben Welter - Wednesday, February 07, 2018

A new heat transfer model of phase change material based on energy asymmetry [Applied Energy]

Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation [Applied Energy]

The melting of salt hydrate phase change material in an irregular metal foam for the application of traction transient cooling [Thermal Science and Engineering Progress]

Solar Energy Latent Thermal Storage by Phase Change Materials (PCMs) in a Honeycomb System [Thermal Science and Engineering Progress]

Fabrication and characterization of diethylene glycol hexadecyl ether-grafted graphene oxide as a form-stable phase change material [Thermochimica Acta]

One-dimensional model of a stratified thermal storage tank with supercritical coiled heat exchanger [Applied Thermal Engineering]

Using silicagel industrial wastes to synthesize polyethylene glycol/silica-hydroxyl form-stable phase change materials for thermal energy storage applications [Solar Energy Materials and Solar Cells]

Steam-PCM heat exchanger design and materials optimization by using Cr-Mo alloys [Solar Energy Materials and Solar Cells]

Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage [Solar Energy Materials and Solar Cells]

Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage [Solar Energy Materials and Solar Cells]